Répondre à la discussion
Affichage des résultats 1 à 12 sur 12

parabole



  1. #1
    progui3

    parabole


    ------

    bonjour
    Je demande de l'aide pour cet exercice je suis en seconde SES
    Soit un repere orthonormé O I et J
    La droite D d'équation y = - 1/4 et le point F(0;1/4)
    On considere un point quelconque H de D et la mediatrice Z cde FH.La droite FH coupe la perpendiculaire en H a D en un point M
    Le pub de cet exercice est de determinée une équation de l'ensemble P des points M(x ; y)

    1/Ds un repere orthornormé d unité 2 cm placer plusieurs points H et contruire les points M correspondants Comment faire?
    2/ Quelles sont les coordonnées du point H?
    3/En déduire une relation liant y et x reconaissez vous lensemble P COnstruire sa courbe ds un autre repere
    Merci de maider pour tout les points

    -----

  2. Publicité
  3. #2
    matthias

    Re : parabole

    Citation Envoyé par progui3
    Merci de maider pour tout les points
    touS les points
    Tu veux une démonstration détaillée en plus je suppose ?

  4. #3
    Coincoin

    Re : parabole

    Bonjour,
    Les intervenants de ce forum ne sont pas là pour faire les exercices à ta place. Alors soit tu nous dit ce que tu as fait, ce qui te bloque, ce que tu ne comprends pas, etc..., soit les méchants modérateurs vont devoir sévir !
    Encore une victoire de Canard !

  5. #4
    Romain-des-Bois

    Re : parabole

    As-tu fais un dessin pour comprendre comment se "fabrique" le point M ?

    Pense aussi que la médiatrice c'est l'ensemble des points équidistants des extrémités du segment.
    Ex : segment [AB]. M appartient à la médiatrice de [AB]
    <=> AM=BM

  6. A voir en vidéo sur Futura
  7. #5
    progui3

    Re : parabole

    soit H un point quelconque de la droite d'équation y = -1/4 d'abscisse x on a :
    H( x ; -1/4)
    F( 0 ; 1/4)
    le milieu I de [HF] a pour coordonnées ( (x + 0)/2 ; (-1/4 + 1/4)/2)
    soit ( x/2 ; 0 )
    soit M(x ; y) le point d'intersection de la perpendiculaire à D passant par H et de la médiatrice Z on a :
    MIH est rectangle en I donc
    HM² = IM² + IH²
    HM² = (x - x)² + (y + 1/4)² = (y + 1/4)²
    IM² = (x - x/2)² + (y - 0)² = (x/2)² + y² = x²/4 + y²
    IH² = (x - x/2)² + (-1/4)² = x²/4 + 1/16


    c est juste ou pas?

  8. #6
    erik

    Re : parabole

    c est juste ou pas?
    ça à l'air très bien, y'a plus qu'à conclure

  9. Publicité
  10. #7
    progui3

    Re : parabole

    qulles conclusions

  11. #8
    erik

    Re : parabole

    Je voulais dire terminer l'exercice

  12. #9
    progui3

    Re : parabole

    ca suffitr que que jai mis???

  13. #10
    progui3

    Re : parabole

    c est quoi la conclusion

  14. #11
    erik

    Re : parabole

    Tu as vu que HM² = IM² + IH² ,
    et tu as calculé
    HM² = (x - x)² + (y + 1/4)² = (y + 1/4)²
    IM² = (x - x/2)² + (y - 0)² = (x/2)² + y² = x²/4 + y²
    IH² = (x - x/2)² + (-1/4)² = x²/4 + 1/16

    maintenant il te reste à exprimer y en fonction de x : y=.... et là tu devrais reconnaitre l'equation d'une courbe très connu

  15. #12
    progui3

    Re : parabole

    comment je fais pour construire la courbe ds un autre repere je suis bloké la

  16. Publicité

Discussions similaires

  1. [Brun] parabole
    Par gaston la gaf dans le forum Dépannage
    Réponses: 2
    Dernier message: 12/11/2007, 09h28
  2. [Divers] Parabole
    Par Stef96 dans le forum Dépannage
    Réponses: 3
    Dernier message: 05/03/2007, 15h01
  3. [Divers] parabole
    Par power51 dans le forum Dépannage
    Réponses: 2
    Dernier message: 03/02/2007, 23h28
  4. Parabole 3D
    Par oli1978 dans le forum Mathématiques du supérieur
    Réponses: 21
    Dernier message: 16/02/2005, 12h59
  5. parabole
    Par naniocchon43 dans le forum Électronique
    Réponses: 6
    Dernier message: 03/12/2003, 22h08