Répondre à la discussion
Affichage des résultats 1 à 21 sur 21

Divergence de la série harmonique



  1. #1
    Evil.Saien

    Divergence de la série harmonique


    ------

    En parlant de suite et série, je me souviens plus d'un truc, et croyez bien que j'en suis tout honteux !
    Je me souviens plus comment on montre que la série 1 + 1/2 + 1/3 + 1/4 + ... divèrge !!!

    Désolé de poser une question si bête... Mais merci de prendre le temps de m'éclairer !

    -----
    Mon psychiatre, pour quinze mille francs, il m'a débarrassé de ce que j'avais : quinze mille francs

  2. Publicité
  3. #2
    matthias

    Re : [MPSI] Majoration d'une suite

    Citation Envoyé par Evil.Saien
    En parlant de suite et série, je me souviens plus d'un truc, et croyez bien que j'en suis tout honteux !
    Je me souviens plus comment on montre que la série 1 + 1/2 + 1/3 + 1/4 + ... divèrge !!!

    Désolé de poser une question si bête... Mais merci de prendre le temps de m'éclairer !
    En minorant |S(2n) - S(n)|, et en concluant que la suite des sommes partielles n'est pas une suite de Cauchy, par exemple.

  4. #3
    Evil.Saien

    Re : [MPSI] Majoration d'une suite

    Est-ce qu'il n'y a pas un moyen plus simple, par exemple en montrant qu'elle est strictement monotone croissante et que pour tout M >0 il éxiste un N0 tels que S(N0)>M...
    J'ai essayé de le montrer comme ca, mais il y a quelques petits problèmes...

    L'éxplication que tu m'as donné est sans doute correcte, mais ca fait plusieurs années que j'ai pas refait de l'analyse, donc je ne sais plus ce qu'est une suite de cauchy ou "la suite des sommes partielles"...
    Mon psychiatre, pour quinze mille francs, il m'a débarrassé de ce que j'avais : quinze mille francs

  5. #4
    matthias

    Re : [MPSI] Majoration d'une suite

    Citation Envoyé par Evil.Saien
    Est-ce qu'il n'y a pas un moyen plus simple, par exemple en montrant qu'elle est strictement monotone croissante et que pour tout M >0 il éxiste un N0 tels que S(N0)>M...
    J'ai essayé de le montrer comme ca, mais il y a quelques petits problèmes...
    surement, mais de là à dire que ce serait plus simple ...

    Citation Envoyé par Evil.Saien
    L'éxplication que tu m'as donné est sans doute correcte, mais ca fait plusieurs années que j'ai pas refait de l'analyse, donc je ne sais plus ce qu'est une suite de cauchy ou "la suite des sommes partielles"...
    suite des sommes partielles:

    de Cauchy <=>
    Dans IR, suite de Cauchy <=> convergente

  6. A voir en vidéo sur Futura
  7. #5
    matthias

    Re : [MPSI] Majoration d'une suite

    Et ici:


    Et on en déduit que ne peut pas être une suite de Cauchy.

  8. #6
    matthias

    Re : [MPSI] Majoration d'une suite

    Tu as aussi une démo simple en encadrant les (intégrales de f(x) = 1/x entre k et k+1) par 1/k et 1/(k+1), et en sommant.
    Tu retrouves ainsi la constante d'Euler.

  9. Publicité
  10. #7
    evariste_galois

    Re : [MPSI] Majoration d'une suite

    Evil.Saien,

    tu dois sans doute te rappeller du théorème suivant:

    "si une fonction f décroit positivement vers 0, alors son intégrale sur lR+ est de meme nature que la série de terme général f(n)"

    Suffit d'appliquer ce théorème à la série harmonique de terme général 1/n, puisque tu sais que la primitive de 1/x diverge en l'infini.
    "Au train où vont les choses, les choses où vont les trains ne seront plus des gares."

  11. #8
    Evil.Saien

    Re : [MPSI] Majoration d'une suite

    Citation Envoyé par evariste_galois
    Evil.Saien,

    tu dois sans doute te rappeller du théorème suivant:

    "si une fonction f décroit positivement vers 0, alors son intégrale sur lR+ est de meme nature que la série de terme général f(n)"

    Suffit d'appliquer ce théorème à la série harmonique de terme général 1/n, puisque tu sais que la primitive de 1/x diverge en l'infini.
    je connaissais pas ce théorème... forcement !
    Mon psychiatre, pour quinze mille francs, il m'a débarrassé de ce que j'avais : quinze mille francs

  12. #9
    Gwyddon

    Re : [MPSI] Majoration d'une suite

    Je vous propose une démo sympa, par l'absurde :

    On suppose existe.

    Alors l'on a :



    ce qui manifestement est une contradiction

    Voilà, bonne nuit à tous
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  13. #10
    Gwyddon

    Re : [MPSI] Majoration d'une suite

    ah oui, note historique (dans un nouveau message, pour ne pas surcharger le message précédent) : cette démo serait dûe à Johannes Bernoulli (traduite dans le formalisme moderne bien sûr)
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  14. #11
    matthias

    Re : [MPSI] Majoration d'une suite

    Citation Envoyé par 09Jul85
    ah oui, note historique (dans un nouveau message, pour ne pas surcharger le message précédent) : cette démo serait dûe à Johannes Bernoulli (traduite dans le formalisme moderne bien sûr)
    C'est joli, mais c'est pas la démo la plus simple. et c'est dommage il y a une coquille sur la dernière ligne
    c'est

  15. #12
    Gwyddon

    Re : [MPSI] Majoration d'une suite

    Citation Envoyé par matthias
    il y a une coquille sur la dernière ligne
    c'est
    merci pour la correction
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  16. Publicité
  17. #13
    matthias

    Re : [MPSI] Majoration d'une suite

    Citation Envoyé par evariste_galois
    Evil.Saien,

    tu dois sans doute te rappeller du théorème suivant:

    "si une fonction f décroit positivement vers 0, alors son intégrale sur lR+ est de meme nature que la série de terme général f(n)"

    Suffit d'appliquer ce théorème à la série harmonique de terme général 1/n, puisque tu sais que la primitive de 1/x diverge en l'infini.
    Citation Envoyé par Evil.Saien
    je connaissais pas ce théorème... forcement !
    La méthode que j'ai proposée au message #6 revient à le redémontrer dans le cas particulier de f(x) = 1/x
    Cela vient simplement du fait que si f est décroissante,
    et donc:

    En sommant et en utilisant la relation de Chasles, tu commences à entrevoir le résultat du théorème

    [EDIT: merci à la modération d'avoir divisé l'ancien fil]
    Dernière modification par matthias ; 22/04/2005 à 11h39.

  18. #14
    criticus

    Re : Divergence de la suite harmonique

    J'ai 2mn :

    si



    alors Sn >= n*1/n =1 et donc la nième somme partielle ne tend pas vers 0 quand n tend vers l'infini : la série harmonique diverge ! Non ?

  19. #15
    martini_bird

    Re : Divergence de la suite harmonique

    Citation Envoyé par criticus
    J'ai 2mn :

    si



    alors Sn >= n*1/n =1 et donc la nième somme partielle ne tend pas vers 0 quand n tend vers l'infini : la série harmonique diverge ! Non ?
    La suite constante un=2 vérifie un>1, donc elle diverge?

  20. #16
    criticus

    Re : Divergence de la série harmonique

    Citation Envoyé par Evil.Saien
    Je me souviens plus comment on montre que la série 1 + 1/2 + 1/3 + 1/4 + ... divèrge !!!
    C'est bien de cette série dont on parle ou pas ?

  21. #17
    martini_bird

    Re : Divergence de la série harmonique

    C'était juste pour te montrer que tu as écrit une (très) grosse ânerie: une suite minorée ne diverge pas forcément!

    Cordialement.

  22. #18
    criticus

    Re : Divergence de la série harmonique

    Je savais bien que pour qu'une série converge il faut que son terme général tende vers 0 quand n-> infini !

    bonne journée !
    Dernière modification par criticus ; 22/04/2005 à 14h11.
    "Inventer, c'est penser à côté." (Einstein).

  23. Publicité
  24. #19
    matthias

    Re : Divergence de la série harmonique

    Il faut que son terme dénéral tende vers 0, pas la suite des sommes partielles.

  25. #20
    martini_bird

    Re : Divergence de la série harmonique

    Citation Envoyé par criticus
    Je savais bien que pour qu'une série converge il faut que son terme général tende vers 0 quand n-> infini !

    bonne journée !
    Cette condition est nécessaire mais pas suffisante. Le contre-exemple classique est précisément celui de la série harmonique.

  26. #21
    criticus

    Re : Divergence de la série harmonique

    Ah bon je vais revoir mes bases !

Discussions similaires

  1. La série harmonique...
    Par Sarasvatî dans le forum Mathématiques du collège et du lycée
    Réponses: 10
    Dernier message: 02/02/2015, 11h54
  2. Montrer une divergence de série...
    Par Bash dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 04/11/2007, 01h56
  3. Application de la série harmonique à la musique
    Par Cyrbrass dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 14/02/2007, 20h48
  4. developpement asymptotique et serie harmonique
    Par Ksilver dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 20/09/2006, 14h51