Chaîne de Markov
Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

Chaîne de Markov



  1. #1
    invite4f80dcbf

    Chaîne de Markov


    ------

    Bonjour,

    J'ai répondu à la première question, la troisième me pose problème.
    Pouvez-vous m'aider s'il-vous-plaît ?

    Je vous remercie


    -----

  2. #2
    invite4f80dcbf

    Re : Chaîne de Markov

    Bonsoir,

    Personne n'est en mesure de m'aider, de me donner une indication ?

    Je vous remercie!

  3. #3
    invite986312212
    Invité

    Re : Chaîne de Markov

    bonsoir,

    il y a deux façons de traiter ce problème:

    1) en conditionnant par la valeur de X0: tu écris P(X1=k|X0=l) (qui est nul sauf pour l=k-1 ou l=k+1) et ensuite tu utilise la loi des probabilités totales: P(X1=k)=somme des P(X1=k|X0=l)P(X0=l)

    2) en écrivant la fonction génératrice des probabilités g(z)=E(z^X1) et en remarquant que la loi de X1 est une loi composée;

    la deuxième méthode est plus élégante et si tu apprends à la maîtriser, te permettra de traiter des situations plus complexes.

  4. #4
    invite4f80dcbf

    Re : Chaîne de Markov

    Citation Envoyé par ambrosio Voir le message
    bonsoir,

    il y a deux façons de traiter ce problème:

    1) en conditionnant par la valeur de X0: tu écris P(X1=k|X0=l) (qui est nul sauf pour l=k-1 ou l=k+1) et ensuite tu utilise la loi des probabilités totales: P(X1=k)=somme des P(X1=k|X0=l)P(X0=l)

    2) en écrivant la fonction génératrice des probabilités g(z)=E(z^X1) et en remarquant que la loi de X1 est une loi composée;

    la deuxième méthode est plus élégante et si tu apprends à la maîtriser, te permettra de traiter des situations plus complexes.
    Merci beaucoup...

    Je t'avoue ne pas connaître les "fonctions génératrices de probabilités", et je n'ai par ailleurs jamais entendu parler de "loi composée"...
    J'ai donc opté pour la première possibilité, et, après quelques lignes de calcul, j'aboutis à P(X0 = k) = P(X1 = k).

    Je suppose qu'un tel résultat (s'il est juste), ne doit indifférent, d'où la fin de la question 3 : "qu'en déduit-on" ?
    Toutefois, dans ce contexte d'expérience d'Ehrenfest, je ne vois précisément ce qu'on peut en tirer...

    Par ailleurs, pour ce qui est de la question 2., cette chaîne est irréductible et me semble apériodique ; elle serait donc ergodique. Toutefois, j'ai un doute quant à l'apériodicité... Si tu pouvais m'aider également sur ce point, j'en serais, une nouvelle fois, ravi.

    Je te remercie!

  5. A voir en vidéo sur Futura
  6. #5
    invite4f80dcbf

    Re : Chaîne de Markov

    ...histoire que mon post ne sombre pas si vite...

Discussions similaires

  1. Chaine de naissance et mort : chaine de Markov
    Par invite67614aac dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 22/09/2009, 22h40
  2. Chaine de Markov
    Par invite88212cc7 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 03/08/2009, 11h58
  3. Chaine de markov
    Par inviteff5c880c dans le forum Logiciel - Software - Open Source
    Réponses: 11
    Dernier message: 24/12/2008, 00h51
  4. Chaîne de Markov
    Par invitebb921944 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 18/08/2008, 22h54
  5. chaine de Markov
    Par invitefa636c3d dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 01/04/2006, 11h44