Répondre à la discussion
Affichage des résultats 1 à 12 sur 12

tan(x)=x



  1. #1
    I love pitchounette

    tan(x)=x


    ------

    Salut à tous
    voilà un petit problème qui me semble classique mais que je n' arrive pas à résoudre.
    Alors, soit (Xn) la solution de l' équation tan(x)=x sur l' intervalle ]-Pi/2+n*Pi ; Pi/2+n*Pi[. Montrer que Xn~n*Pi en +infini
    Merci d' avance

    -----

  2. Publicité
  3. #2
    sebpoirrier

    Re : tan(x)=x

    bonjour,
    hé bien pourtant ceci est très facile a resoudre !
    quel est ton niveau scolaire ?

    a+
    chaque age porte ses fruits, il faut savoir les cueillir...

  4. #3
    I love pitchounette

    Re : tan(x)=x

    Bah je passe tout juste en MP et l' analyse c' est pas vraiment mon truc. Moi j' aime plutôt l' algèbre et je trouve ça bien plus rigoureux en plus.

  5. #4
    Quinto

    Re : tan(x)=x

    Je ne vois pas en quoi l'analyse est moins rigoureuse que l'algèbre. Celà étant chacun ses gouts, mais je suis surpris par cette remarque...

  6. A voir en vidéo sur Futura
  7. #5
    Quinto

    Re : tan(x)=x

    Pour répondre à ta question c'est vrai que c'est un classique, pour autant je ne me souviens plus de la méthode. A première vue, sans toucher au problème, je dirais que commencer par encadrer les solutions serait une bonne chose, je vais essayer d'y réflechir.
    A+

  8. #6
    I love pitchounette

    Re : tan(x)=x

    Chacun son point de vue mais pour ma part je trouve qu' en analyse, ça fonctionne quand même beaucoup à base d' approximations, de limites, d' encadrements et je trouve juste ça moins précis que l' algèbre. Je me suis mal exprimé, je voulais plutôt dire précis au lieu de rigoureux.

  9. Publicité
  10. #7
    Quinto

    Re : tan(x)=x

    Bon en fait ce n'est pas très difficile je pense.
    Sur (-Pi/2+nPi,Pi/2+nPi) tan(xn)=xn est équivalent à xn=arctan(xn)+nPi
    Notamment |arctan(x)|<Pi/2 et en divisant par nPi et en faisant tendre vers l'infini on trouve
    xn/nPi=1+M/nPi
    et lorsque n tend vers l'infini celà donne xn/nPi->1 et donc xn~nPi
    Sauf erreur(s)
    A+

  11. #8
    Quinto

    Re : tan(x)=x

    Citation Envoyé par Quinto
    xn/nPi=1+M/nPi
    En fait j'ai écris en pensant à autre chose, ce que j'appelle M c'est Pi/2 et en fait on a une inégalité.
    Qu'est ce que j'ai fait? lol
    Il faut reprendre et mettre l'inégalité correct

    -Pi/2+nPi<xn<Pi/2+nPi

    et maintenant tu peux conclure correctement.

  12. #9
    I love pitchounette

    Re : tan(x)=x

    Tout ça me semble très correct. Merci beaucoup. A+

  13. #10
    Quinto

    Re : tan(x)=x

    De rien, vu l'heure à laquelle tu postes je ne sais pas si tu as vu ma version corrigée, l'autre est mauvaise, j'étais pas reveillé.
    Désolé.
    A+

  14. #11
    I love pitchounette

    Re : tan(x)=x

    Ah bah oui finalement c' est encore plus simple. On part de l' encadrement, on divise par nPi et on applique le théorème des gendarmes. Merci encore.

  15. #12
    Quinto

    Re : tan(x)=x

    Oui mais c'est surtout plus juste, ma première solution ne voulait rien dire
    A+

  16. Publicité

Discussions similaires

  1. tan(x/2) = f(tan(x))
    Par couillou11 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 14/09/2007, 18h04
  2. Calculer tan (pi/8)
    Par Bruno dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 26/03/2007, 10h46
  3. Exprimer tan(a+b) en fonction de tan a et tan b
    Par 608 dans le forum Mathématiques du collège et du lycée
    Réponses: 12
    Dernier message: 10/03/2007, 13h50
  4. Help me : tan(x) = x
    Par Kyan dans le forum Mathématiques du supérieur
    Réponses: 28
    Dernier message: 07/09/2006, 09h27
  5. primitive de tan(x)
    Par Droledenom dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 23/11/2005, 16h08