Répondre à la discussion
Affichage des résultats 1 à 13 sur 13

Primitive de sin(x^2)



  1. #1
    I love pitchounette

    Primitive de sin(x^2)


    ------

    Salut j' ai un nouveau problème. Alors voilà :
    pour n>0, on note (xn) et (yn) les suites dont les termes sont respectivement les maxs et mins locaux de la fonction f(x)=int(sin(x^2),0,t)
    On note (an)=f(xn) et (bn)=f(yn). J ai démontré que (an) et (bn) sont adjacentes mais maintenant il faut en déduire que f(x) admet une limite finie (qu' on ne demande pas de calculer) quand x tend vers +infini.
    Bonne chance et merci beaucoup.

    -----

  2. Publicité
  3. 📣 Nouveau projet éditorial de Futura
    🔥🧠 Le Mag Futura est lancé, découvrez notre 1er magazine papier

    Une belle revue de plus de 200 pages et 4 dossiers scientifiques pour tout comprendre à la science qui fera le futur. Nous avons besoin de vous 🙏 pour nous aider à le lancer...

    👉 Je découvre le projet

    Quatre questions à explorer en 2022 :
    → Quels mystères nous cache encore la Lune 🌙 ?
    → Pourra-t-on bientôt tout guérir grâce aux gènes 👩‍⚕️?
    → Comment nourrir le monde sans le détruire 🌍 ?
    → L’intelligence artificielle peut-elle devenir vraiment intelligente 🤖 ?
  4. #2
    Quinto

    Re : Primitive de sin(x^2)

    Bonjour.
    Je ne vois pas de dépendance en n ici.

  5. #3
    I love pitchounette

    Re : Primitive de sin(x^2)

    Non mais c' est normal car en fait les termes des suites (xn) et (yn) représentent respectivement les abscisses des maximums et des minimums locaux de la restriction de la fonction f à R+*. Pour info. j' ai déterminé que
    xn= sqrt((2n-1)Pi)
    yn= sqrt(2nPi)
    xn et yn étant définies pour n>0

  6. #4
    Pole

    Re : Primitive de sin(x^2)

    f varie entre -t et t.

    f(x)=int(sin(x^2),0,t)=t*sin(x ^2)

    Tu nous demande quoi? Je n'ai pas vue une seule question?

  7. A voir en vidéo sur Futura
  8. #5
    I love pitchounette

    Re : Primitive de sin(x^2)

    Je pense que tu n' as pas du comprendre ma notation pole.
    int(sin(x^2),0,t) est l' intégrale de sin(x^2) calculée entre 0 et t. Autrement dit, c' est une primitive de sin(x^2). Je ne comprends pas pourquoi tu as écris qu' elle était égale t*sin(x^2). Ma question est de savoir comment démontrer que f admet une limite finie quand x tend vers +infini en s'aidant du fait que (an) et (bn) sont adjacentes.

  9. #6
    Quinto

    Re : Primitive de sin(x^2)

    Oula, ok je viens de comprendre ce que sont (xn) et (yn), c'était pas clair.
    Je vais essayer de voir ce que je peux faire.
    Ta fonction est une fonction de t, pas de x.

    (xn) et (yn) sont des "vraies" suites, (ie le nombre de termes est infinis).
    (an) et (bn) sont des suites adjacentes, donc (an-bn) tend vers 0.
    Je pense que l'on peut facilement montrer que (xn) et (yn) tendent vers l'infini (Bolzano-Weierstrass)
    Si c'est exact, on peut alors montrer que f(t) reste "coincée" entre (an) et (bn).
    Tu ne peux pas t'en servir brutalement puisque (an) et (bn) sont des suites et f(t) est une fonction, ca n'a donc pas de sens de comparer f(t) et (an) et (bn), mais en se débrouillant bien ca a du sens (notamment (an) et (bn) sont adjacentes).
    Voici une réaction à chaud de l'idée qu'il faut utiliser.
    Bonne chance,
    A+

  10. Publicité
  11. #7
    Quinto

    Re : Primitive de sin(x^2)

    Ici tout ce que je dis marche bien, il suffit de trouver l'encadrement de f en fonction de (an) et (bn) et de (xn) et (yn).
    Notamment trouver explicitement (xn) et (yn) est assez simple.
    Si tu ne comprends pas, fait un dessin et ca te sautera aux yeux.
    A+

  12. #8
    Quinto

    Re : Primitive de sin(x^2)

    Citation Envoyé par Quinto
    Je pense que l'on peut facilement montrer que (xn) et (yn) tendent vers l'infini (Bolzano-Weierstrass)
    Il est bien évident que lorsque j'ai dit ca, je n'ai pas vu que l'on pouvait facilement expliciter (xn) et (yn). Maintenant on a pas besoin de B-W pour démontrer un truc aussi évident, (yn) et (xn) étant en racine carrée d'un truc linéaire.
    A+

  13. #9
    I love pitchounette

    Re : Primitive de sin(x^2)

    C' est bon j' ai réussi en faisant un dessin. J' ai encadré f avec des fonctions en escaliers qui prennent les valeurs de an et de bn. Puis j' ai utilisé le théorème des gendarmes pour finir. Merci beaucoup.

  14. #10
    Quinto

    Re : Primitive de sin(x^2)

    C'était en effet l'idée.
    A+

  15. #11
    Pole

    Re : Primitive de sin(x^2)

    Pour ta fonction on devrait mettre f(t)=int(sin(x^2),0,t).
    Cette fonction a pour limite 1/4*sqrt(2)*sqrt(Pi). (soit environ 0.6266570685) Ma démo tient en un seule mot : Maple

  16. #12
    Quinto

    Re : Primitive de sin(x^2)

    C'est pas une démo si c'est Maple.
    Pour trouver la limite, ça doit bien se faire avec l'intégrale de Gauss, ou avec peut être les résidus. Celà étant la limite n'est pas demandée.

  17. Publicité
  18. #13
    Gwyddon

    Re : Primitive de sin(x^2)

    Cela ne s'appelle pas une démo...

    EDIT : croisement avec Quinto . Cela dit, puisque tu en parles, il m'était aussi venu à l'esprit l'intégrale . On doit sûrement pouvoir faire des trucs avec.
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

Discussions similaires

  1. Primitive de 1/sin(x)
    Par v_711 dans le forum Mathématiques du supérieur
    Réponses: 12
    Dernier message: 03/02/2014, 21h27
  2. Pb primitive cos(a*sin(b*t))
    Par timdeca dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 31/05/2007, 13h03
  3. Démo : ( |sin (n) / sin (n+1)| ) diverge
    Par prgasp77 dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 10/05/2007, 23h25
  4. cos(ωt).sin(ωt)=0? et sin²(ωt)=1/4?
    Par Ssk dans le forum Mathématiques du supérieur
    Réponses: 19
    Dernier message: 17/02/2006, 18h13
  5. primitive de sin²x
    Par adrislas dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 01/05/2005, 11h10