Répondre à la discussion
Affichage des résultats 1 à 9 sur 9

Inverse sin(x) different reciproque sin(x)???



  1. #1
    debroglie66

    Inverse sin(x) different reciproque sin(x)???


    ------

    bonjour!



    pouvez vous m'aider en me donnant un exemple chiffré simple,je cherche à savoir si arc sin(x) est different de 1/sin(x)?
    merci d'avance!





    cordialement!

    -----
    le génie est fait de 1% d'inspiration et de 99% de transpiration (Thomas Edison)!

  2. Publicité
  3. #2
    Thorin

    Re : inverse sin(x) different reciproque sin(x)???

    salut
    arcsin(0)=0
    1/sin(0)=...?
    École d'ingénieurs + M1 Physique Fondamentale

  4. #3
    debroglie66

    Re : inverse sin(x) different reciproque sin(x)???

    Citation Envoyé par Thorin Voir le message
    salut
    arcsin(0)=0
    1/sin(0)=...?
    *


    merci j'ai compris grace à vous 1/sin(0) est indefini le resultat tend vers l'infini c'est different de la fonction reciproque arcsin(x).
    ce qui m'a induit en erreur c'est que sur ma ti 89 les fonctions trigonometriques reciproques sont notées par exemple sin^-1(x)?



    merci et cordialement!
    le génie est fait de 1% d'inspiration et de 99% de transpiration (Thomas Edison)!

  5. #4
    morph

    Re : inverse sin(x) different reciproque sin(x)???

    C'est parce que l'on note généralement la fonction réciproque de la fonction :

    Donc là f = sin.

    Cordialement.

  6. #5
    invite986312212
    Invité

    Re : inverse sin(x) different reciproque sin(x)???

    au fait j'ai l'impression qu'il n'y a pas de fonction réelle vérifiant .
    on aurait bien envie de poser mais ça n'est pas une fonction bien définie.

  7. A voir en vidéo sur Futura
  8. #6
    Crossfire

    Re : Inverse sin(x) different reciproque sin(x)???

    Et f:{1}->{1} ?

  9. Publicité
  10. #7
    breukin

    Re : Inverse sin(x) different reciproque sin(x)???

    est une fonction bien définie sur R+*, mais elle n'est pas réelle.

  11. #8
    Ksilver

    Re : Inverse sin(x) different reciproque sin(x)???

    au fait j'ai l'impression qu'il n'y a pas de fonction réelle >>> il y en a... plein même
    enfin... de R*->R* car f peut clairement pas être défini en 0...
    par exemple :
    si x>0 f(x)=-x
    si x<0 f(x)=-1/x


    on alors trivialement que : f(f(x)) = 1/x et f(1/x)=1/f(x)

    du coup : 1/f(f(x)) =x et f(1/f(x)) = x

  12. #9
    invite986312212
    Invité

    Re : Inverse sin(x) different reciproque sin(x)???

    Citation Envoyé par Ksilver Voir le message
    si x>0 f(x)=-x
    si x<0 f(x)=-1/x
    ah oui, bien vu! j'avais repéré moi aussi le problème du zéro et je cherchais une bijection d'un intervalle de R sur lui-même, je n'avais pas pensé à échanger R+ et R-

Sur le même thème :

Discussions similaires

  1. Sin(nx)/sin(x) avec n impair.
    Par thepasboss dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 03/02/2010, 20h09
  2. Sin(-pi/18)
    Par Marcodu58 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 17/11/2008, 16h48
  3. sin (3x)
    Par Juliette.! dans le forum Mathématiques du collège et du lycée
    Réponses: 19
    Dernier message: 15/11/2008, 18h55
  4. Démo : ( |sin (n) / sin (n+1)| ) diverge
    Par prgasp77 dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 10/05/2007, 23h25
  5. cos(ωt).sin(ωt)=0? et sin²(ωt)=1/4?
    Par Ssk dans le forum Mathématiques du supérieur
    Réponses: 19
    Dernier message: 17/02/2006, 18h13