Développement limité
Répondre à la discussion
Affichage des résultats 1 à 4 sur 4

Développement limité



  1. #1
    invitedc924c89

    Développement limité


    ------

    Bonjour,
    Alors, voila mon très gros problème, il s'agit des développements limités. !j'ai des éxercices a faire dessus, mais je n'ai rien compris du tout au cours, je ne sais même pas quoi faire quand j'ai ma fonction sous les yeux.
    Par exemple, la première fonction c'est :
    f(x) =( 1 / (2-x)) + (1 / (1+2x))
    Je suppose que c'est simple vu que c'est le premier DL qu'on doit calculer, mais je sais pas quoi faire de ça. J'ai aucune idée.
    Il y a 6 fonctions pour lesquelles il faut calculer le DL a l'ordre 3 en 0 sans utiliser la formule de Taylor ( enfin, bon, je sais même pas ce que c'est alors... ). Je sais pas du tout par ou commencer, est-ce qu'il y a une marche à suivre, des étapes ? Je suis complétement larguée, quelqu'un pourrait-il m'expliquer ce qu'il faut faire pour calculer un DL. S'il vous plait , j'en ai vraiment besoin.
    Merci.

    -----

  2. #2
    invite9617f995

    Re : Développement limité

    Bonjour,

    Si tu n'as pas le droit d'utiliser la formule de Taylor, alors as-tu vu des développement limités usuels que tu dois connaître par cœur ? Notamment pour cet exercice le DL de 1/(1+u) ?

    Silk

  3. #3
    inviteeb56caec

    Re : Développement limité

    Tout d'abord il faut que tu apprennes les formules des fonctions usuelles par coeur.
    Pois f(x)=1/(2-x)+1/(1+2x)
    au premier abord, on sait que je vais utiliser les formules de 1/1-x et 1/1+x
    rappel: 1/(1-x)=1+x+x^2+x^3..........
    1/(1+x)=1-x+x^2-x^3........
    On comment par transformer 1/2-x
    =(1/2)*(1/(1-x/2)
    ensuite tu mets x/2 dans la fonction de 1/1-x:
    1+x/2+(x^2)/4+(x^3)/8+x^3epsilon(x)
    Finalement 1/(2-x)=1/2+x/4+(x^2)/8+(x^3)/16+x^3epsilon(x)

    Tu feras de la meme manière pour transformer1 / (1+2x), puis tu fais la somme

    Bon courage

  4. #4
    invitedc924c89

    Re : Développement limité

    Merci beaucoup pour votre aide. je pense avoir compris le principe de base. En tout cas, j'ai fait 5 DL sur les 6 demandés. On verra si c'est juste. Pour le dernier, il faut utiliser la formule de taylor, je verrai lors de la correction de quoi il s'agit.
    J'ai juste une dernière petite question, dans un autre éxercice, on demande un DL à l'ordre 3 en 2. Est-ce la même chose qu'en 0 ou il y à une différence ?
    Encore merci pour votre aide précieuse . Maintenant, il faut que j'apprenne les formules par coeur.

  5. A voir en vidéo sur Futura

Discussions similaires

  1. calcul de limite et développement limité
    Par invite9ac8f13d dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 19/04/2010, 00h31
  2. Développement limité d'une racine et limite
    Par invitebca2f49a dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 26/02/2010, 14h13
  3. Développement limité !!
    Par invite632c669d dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 06/12/2009, 14h53
  4. Etude de limite avec developpement limité
    Par invite3404b97b dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 16/11/2009, 11h13
  5. Bloquage sur limite (développement limité)
    Par invite39968a5c dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 30/03/2008, 14h32