théorème de Pythagore
Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

théorème de Pythagore



  1. #1
    invite0aa2946c

    théorème de Pythagore


    ------

    Bonsoir,

    petit dilemne de la soirée : pas moyen de retrouver la démo du théorème le plus célèbre de l'histoire.

    J'imagine qu'il y a une plein de démonstrations possibles mais on est particulièrement concentrés sur une histoire de carrés formés par les cotés et leur surface....

    Si ça vous dit quelquechose....

    merci!!

    -----

  2. #2
    invite0982d54d

    Re : théorème de Pythagore

    Avec des vecteurs, et une relation de Chales tu peux démontrer le théorème de Pythagore.
    Triangle ABC rectangle en B.

    Tu élèves au carrée.

    Ca donne :

  3. #3
    azt

    Re : théorème de Pythagore

    Voici quelques exemples de démonstration de ce joli théorème :
    http://www.ac-creteil.fr/Colleges/93.../pythagore.htm

    @+
    Nous sommes toujours de la taille de l'univers que nous découvrons. [Frédérick Tristan]

  4. #4
    invite2ec8adb6

    Re : théorème de Pythagore

    Citation Envoyé par iwio
    Avec des vecteurs, et une relation de Chales tu peux démontrer le théorème de Pythagore.
    Triangle ABC rectangle en B.

    Tu élèves au carrée.

    Ca donne :
    C'est donc en fait un corollaire du théorème d' Al-kashi

  5. A voir en vidéo sur Futura
  6. #5
    invitedf667161

    Re : théorème de Pythagore

    Pour être plus bourrin on peut directement dire que c'est une conséquence de la définition d'un produit scalaire sur un espace vectoriel. Si x et y sont orthogonaux alors :

    || x+y || ² = ||x||² + 2<x,y> + ||y||² = ||x||² + ||y||²

  7. #6
    invite8241b23e

    Re : théorème de Pythagore

    Citation Envoyé par GuYem
    Pour être plus bourrin on peut directement dire que c'est une conséquence de la définition d'un produit scalaire sur un espace vectoriel.
    Mais cette définition n'a pas eu besoin à un moment de Pythagore ?

  8. #7
    invitedf667161

    Re : théorème de Pythagore

    Non.

    On définit un produit scalaire sur E avec les axiomes habituels: bilinéarité, définie positivité. Ensuite on définit la notion de vecteur orthogonaux par <x,y>=0 et on développe ||x+y||² = <x+y,x+y>

  9. #8
    invité576543
    Invité

    Re : théorème de Pythagore

    Citation Envoyé par GuYem
    Non.

    On définit un produit scalaire sur E avec les axiomes habituels: bilinéarité, définie positivité. Ensuite on définit la notion de vecteur orthogonaux par <x,y>=0 et on développe ||x+y||² = <x+y,x+y>
    Bonjour,

    Certes. Mais il existe une axiomatique de la géométrie qui n'est pas analytique! A base de points, droites, parallèles, ... les axiomes d'Euclide!

    Ce que tu dis est valable dans une axiomatique de R², en analytique pur. La correspondance géométrie plane Euclidienne <-> propriétés de R² peut fort bien introduire Pythagore...

    Dans le lien cité par azt, la démo 3 est purement géométrique, et doit pouvoir, une fois écrite en entier, s'appuyer uniquement sur les axiomes d'Euclide.

    Détail: comme le théorème est spécifique Euclidien, l'apparition explicite de l'axiome des parallèle me semble requis pour une "belle" démonstration...

    Cordialement,

Discussions similaires

  1. Théorème de Pythagore
    Par invitef6a8dd1c dans le forum Mathématiques du supérieur
    Réponses: 44
    Dernier message: 07/08/2006, 14h18
  2. theoreme de pythagore
    Par inviteb1ef7d0e dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 15/05/2006, 14h33
  3. Théorème de pythagore
    Par invite5d430acb dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 31/12/2005, 17h02
  4. Théorème de Pythagore
    Par invitedf00f51a dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 03/11/2005, 09h48
  5. Démonstration du théorème de Pythagore
    Par invitea07cdaf1 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 13/11/2004, 11h25