Sur les applications lineaires.
Répondre à la discussion
Affichage des résultats 1 à 4 sur 4

Sur les applications lineaires.



  1. #1
    invited7e4cd6b

    Sur les applications lineaires.


    ------

    Bien le bonjour à vous,
    Je souhaite vérifier la conformité d'un résultat que j'ai rencontré dans un ouvrage de mathématiques, concernant le calcul différentiel.
    On a trouvé deux applications linéaires, et , de vers; où deux espaces vectoriels de dimension finie.
    On a trouvé cela:

    Soit un vecteur appartenant a un ouvert de . ; quand h->0.
    On en déduit donc par définition: Pour tout epsilon positif, il existe un positif tel que appartient a la boule fermée de centre 0 et de rayon tel que: et on annonça:
    Puisque L-T est linéaire alors on a lll L-T lll<epsilon, tel que epsilon est positif quelconque. où lll.lll est la norme subordonnée.
    Merci de clarifier l’enchaînement.
    Cordialement,

    -----

  2. #2
    invited7e4cd6b

    Re : Sur les applications lineaires.

    Est-ce triviale? car j'ai du démontrer le résultat en 1 page... et j'ai utilisé la complétude de E et F. Donc est-ce que ce résultat ce généralise sur n'importe quel Espace vectoriel ou exclusivement sur les espaces de dimension finie ( voire complet en toute rigueur.)

  3. #3
    invite57a1e779

    Re : Sur les applications lineaires.

    Bonjour,

    Je note : . La définition de est :



    Y a-t-il un problème à ce niveau ?

    On en déduit que est majoré par sur la boule privée de son centre.

    Y a-t-il un problème à ce niveau ?

    La norme subordonnée est la borne supérieure de sur la boule privée de son centre.

    Y a-t-il un problème à ce niveau ?

    Donc . On en conclut que minore , donc que et est l'application linéaire nulle.

    Y a-t-il un problème à ce niveau ?

    Remarque sur la norme subordonnée : on définit généralement comme la borne supérieure de sur la boule privée de son centre.

    Mais la linéarité de prouve immédiatement que, par homothétie, prend les mêmes valeurs, donc admet la même borne supérieur sur toutes les boules privées de leur centre.

  4. #4
    invited7e4cd6b

    Re : Sur les applications lineaires.

    Bonjour,
    J'ai fais a peu près la même chose.
    J'ai considéré cependant une base B=(e1,e2,...,en) et j'ai montré que: llf(x)ll/llxll est nulle pour tout x.
    Donc peut-on généraliser ce résultat sur tout espace vectoriel? J'ai pensé a l'axiome du choix, mais je pense que ce que vous avez fait ne se base aucunement sur la complétude encore moins sur la finitude de l'espace.

  5. A voir en vidéo sur Futura

Discussions similaires

  1. questions sur les applications linéaires , matrices associées et ses inverses
    Par inviteb17448ba dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 31/05/2011, 21h32
  2. Question sur les matrices associées aux applications linéaires.
    Par invite2016c00b dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 25/04/2011, 01h59
  3. isomorphisme d'anneau de l'ensemble des matrices carrés dans les applications linéaires de K^n
    Par invitefe5c9de5 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 13/04/2010, 20h34
  4. applications linéaires
    Par invite466b97a3 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 30/01/2010, 12h05
  5. projection pour les applications linéaires
    Par invite4ed7fa9f dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 12/07/2005, 14h48