Bonsoir à tous,
En réponse à la question : Can one describe the commutator subgroup of a free group by a first order formula in the group theory language ?, j'ai lu : The negative answer to this problem follows from a positive solution of Tarskii's problem by O.Kharlampovich and A.Myasnikov. Indeed, if the answer to the problem was positive, this would imply that the elementary theory of a free non-abelian group F (with constants from F in the language) is undecidable, since there is no algorithm for deciding if a given equation in a free group F has solutions from [F,F].
Mais j'avoue ne pas avoir vraiment compris comment l'on arrive à la conclusion que les groupes libres (non abéliens) ne sont pas élémentairement équivalents...
Une petite explication ?
Merci d'avance,
Seirios
-----