indépendance de vecteurs gaussiens
Répondre à la discussion
Affichage des résultats 1 à 2 sur 2

indépendance de vecteurs gaussiens



  1. #1
    inviteca353826

    indépendance de vecteurs gaussiens


    ------

    Bonsoir,
    Je bloque sur la résolution de cette exercice,

    Soit X un vecteur aléatoire de loi Nn(m,R) (n>=2) et A et B deux matrices de Mn,n(R)
    Posons Y= AX et Z=BX
    Montrer que Y et Z sont indépendants ssi ARtB est nulle.

    Est-ce suffisant si je procède comme suis:

    Y et Z vecteurs gaussiens (CL de X)
    Si Y et Z sont indépendant alors leur covariance est nulle :
    Cov(Y,Z) = cov(AX,BX) = Avar(X)tB = ARtB = 0 ?

    -----

  2. #2
    inviteca353826

    Re : indépendance de vecteurs gaussiens

    Ce résultat me semble absurde on ne peut pas définir la variance d'un vecteurs ou la covariance de deux vecteurs ? faut-il explicité chaque matrice de variance covariance en fonction des composantes ? voir ou sont les 0..

Discussions similaires

  1. indépendance d'évènements
    Par invitea2dd218e dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 11/10/2011, 23h22
  2. Différentielle et indépendance
    Par inviteca851286 dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 25/06/2011, 12h27
  3. vecteurs gaussiens
    Par invitee75a2d43 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 17/05/2011, 09h10
  4. Probabilités, indépendance, ts.
    Par invite8efa6fc2 dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 04/04/2009, 10h45
  5. l`independance
    Par invite936a40b7 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 10/11/2005, 17h27