équation differentielle
Répondre à la discussion
Affichage des résultats 1 à 29 sur 29

équation differentielle



  1. #1
    invite69845a40

    équation differentielle


    ------

    Bonjour,à la communauté FS
    j'aimerai savoir comment résoudre cette équation qui m'a mis en échec durant 2 nuits.voici l'énoncé
    Déterminer les fonctions y de C^2(R) telles que:

    y y' y"
    y' y" y =0
    y" y y'

    -----

  2. #2
    invited5b2473a

    Re : équation differentielle

    J'imagine que c'est des plus entre chaque y? Dans ce cas ces trois equations sont identiques ou alors il manque des coefficients?

  3. #3
    invite69845a40

    Re : équation differentielle

    non n'y a pas des plus entre les y.la valeur absolue de l'expression de droite égale à 0.5IL n'y a pas des signes entre les y que se soit suivant la verticale ou l'horizontale.
    Merçi d'avance

  4. #4
    invited5b2473a

    Re : équation differentielle

    Dans ce cas je ne comprends pas l'enonce. Ca veut dire quoi

  5. A voir en vidéo sur Futura
  6. #5
    inviteaf1870ed

    Re : équation differentielle

    "L'expression de droite" ??? je vois un zéro.....dont je doute fort que sa valeur absolue soit 0,5....

  7. #6
    invite69845a40

    Re : équation differentielle

    Je me suis planté,c'est l'expression de gauche qui est en valeur absolu.J'espère que je suis assez claire
    amicalement

  8. #7
    invited5b2473a

    Re : équation differentielle

    Aaaaah ok, tu parles du determinant de la matrice non? Dans ce cas a quelle condition sur les colonnes un determinant est nul?

  9. #8
    invited5b2473a

    Re : équation differentielle

    Et ca te dirait pas d'apprendre a ecrire en latex?

  10. #9
    invite69845a40

    Unhappy Re : équation differentielle

    C'est pas marant pour indication c'est un exercice de concour(les oraux de X 2006)

  11. #10
    invited5b2473a

    Re : équation differentielle

    Citation Envoyé par farallon Voir le message
    C'est pas marant
    En effet, ce n'est pas marrant. Ton enonce est incomprehensible.

  12. #11
    inviteaf1870ed

    Re : équation differentielle

    Citation Envoyé par farallon Voir le message
    Je me suis planté,c'est l'expression de gauche qui est en valeur absolu.J'espère que je suis assez claire
    amicalement
    Soit c'est effectivement un exo d'oral de l'X, et tu ne me sembles pas avoir le niveau, sais tu au moins ce qu'est un déterminant ?

    Soit, quoi au fait

  13. #12
    invited3a27037

    Re : équation differentielle

    C'est le déterminant d'une matrice circulante
    http://fr.wikipedia.org/wiki/Matrice_circulante

    On peut les diagonaliser etc

  14. #13
    gg0
    Animateur Mathématiques

    Re : équation differentielle

    Joël,

    est-ce utile de répondre à quelqu'un qui pose une question d'oral de Polytechnique mais qui ne sait pas ce qu'est un déterminant ? Ce n'est pas un questionneur sérieux.

    Cordialement.

    NB : Il y a très peu de chance qu'il sache ce qu'est une matrice circulante !!!

  15. #14
    invite69845a40

    Angry Re : équation differentielle

    hey stop,je suis en prépas je sais très bien ce que c'est une matrice circulante.Dit donc gg0 lorsqu'on ne cerne pas un problème,on se renseigne au lieu d'affirmer ce que l'on ne maitrise meme pas.babylonej'ai enfin trouvé la solution que je me fait le plaisir de détailler:
    ce déterminant vaut: D=-1/2(y+y'+y")((y-y')^2+(y'-y")^2+(y"-y)^2)
    l'équation est équivalente à:
    y+y'+y"=0 ou y=y'=y" les solutions dey+y'+y"=0 sont:
    y(x)=exponentielle(-x/2)[Acos((racine de 3)/2)x+Bsin((racine de 3)/2)x] et les solutions de y=y'=y" sont: y(x)=Cexponentiellex
    COMPORTONS NOUS EN SCIENTIFIQUES!!!!!!!!

  16. #15
    gg0
    Animateur Mathématiques

    Re : équation differentielle

    Farallon :

    COMPORTONS NOUS EN SCIENTIFIQUES!!!!!!!!
    Tu aurais pu commencer toi-même ! Tu es en classe prépa et tu confonds les barres de déterminant et la notation des valeurs absolue ! Comment pourrait-on te prendre au sérieux ?
    Tu poses des questions avant de lire vraiment l'énoncé pour savoir ce qui est écrit. Comment pourrait-on considérer que tu as réfléchi à l'énoncé avant de venir ici ?

    .Dit(sic) donc gg0 lorsqu'on ne cerne pas un problème
    Qu'en sais-tu que je en cerne pas le problème. Je n'ai écrit aucune énormité, et je savais parfaitement quel était ton exercice (facile de comprendre). mais je ne réponds jamais à ceux qui ne comprennent même pas de quoi ils parlent.

    Enfin, tu as trouvé une explication, donc tu sais maintenant de quoi ça parle. Tant mieux pour toi !

    Cordialement.

  17. #16
    invited5b2473a

    Re : équation differentielle

    Citation Envoyé par farallon Voir le message
    hey stop,je suis en prépas je sais très bien ce que c'est une matrice circulante.Dit donc gg0 lorsqu'on ne cerne pas un problème,on se renseigne au lieu d'affirmer ce que l'on ne maitrise meme pas.babylonej'ai enfin trouvé la solution que je me fait le plaisir de détailler:
    ce déterminant vaut: D=-1/2(y+y'+y")((y-y')^2+(y'-y")^2+(y"-y)^2)
    l'équation est équivalente à:
    y+y'+y"=0 ou y=y'=y" les solutions dey+y'+y"=0 sont:
    y(x)=exponentielle(-x/2)[Acos((racine de 3)/2)x+Bsin((racine de 3)/2)x] et les solutions de y=y'=y" sont: y(x)=Cexponentiellex
    COMPORTONS NOUS EN SCIENTIFIQUES!!!!!!!!
    C'est pas tout à fait vrai.
    Ecoute, tu sais ce qu'est une matrice circulante mais tu es incapable de recopier une simple équation? Tu serais pas un peu tocard des fois?

  18. #17
    invite69845a40

    Re : équation differentielle

    C'est quoi se délire?indian58 tu prétends que je suis un tocard,mais un tocard n'arriverait jamais à résoudre cette exercice meme par un hasard fou. Ton attitude me sidère.on devrait interdire sur ce forum des gens qui tiennent des languages de sauvages,idem pour gg0.En fait je savais qu'en disant valeur absolue ça allait créer la panique. Good luck

  19. #18
    invited5b2473a

    Re : équation differentielle

    Citation Envoyé par farallon Voir le message
    C'est quoi se délire?indian58 tu prétends que je suis un tocard,mais un tocard n'arriverait jamais à résoudre cette exercice meme par un hasard fou.
    En attendant, tu n'arrives pas à le résoudre, non?

    En fait je savais qu'en disant valeur absolue ça allait créer la panique
    Eh, la fin du monde c'est le 21. Tu es un peu en retard.

  20. #19
    invite69845a40

    Re : équation differentielle

    On voit bien que tu ne lis pas les posts.Ton problème c'est de ridiculiser les autres.j'ai donné la solution plus haut.C'est désolant.La fin du monde le 21,laisse moi rire!!!!En tous cas on vient échanger des idées pas se dénigrer

  21. #20
    invited5b2473a

    Re : équation differentielle

    Citation Envoyé par farallon Voir le message
    On voit bien que tu ne lis pas les posts.Ton problème c'est de ridiculiser les autres.j'ai donné la solution plus haut.C'est désolant.La fin du monde le 21,laisse moi rire!!!!En tous cas on vient échanger des idées pas se dénigrer
    Euh tu pourrais détailler comment tu trouves ton déterminant?

  22. #21
    invite69845a40

    Re : équation differentielle

    J'ai juste aplliqué la formule adéquate.Tu te comporte comme un gamin en voulant jauger mes connaissances.Ce genre de comportement est déplorable

  23. #22
    inviteaf1870ed

    Re : équation differentielle

    Et quelle formule adéquate as tu utilisé ? Il y en a plusieurs pour les déterminants...

    Et ta solution est fausse...

  24. #23
    invited5b2473a

    Re : équation differentielle

    Citation Envoyé par ericcc Voir le message
    Et quelle formule adéquate as tu utilisé ? Il y en a plusieurs pour les déterminants...

    Et ta solution est fausse...
    Je sais pas si son determinant est juste mais moi je trouve D=3yy'y"- y^3-y'^3-y"^3.

  25. #24
    inviteaf1870ed

    Re : équation differentielle

    Indian58 regarde l'Identité de Gauss ici : http://fr.wikipedia.org/wiki/Identit%C3%A9_remarquable

  26. #25
    invited5b2473a

    Re : équation differentielle

    Citation Envoyé par ericcc Voir le message
    Indian58 regarde l'Identité de Gauss ici : http://fr.wikipedia.org/wiki/Identit%C3%A9_remarquable
    Ah ok merci je ne connaissais pas cette identite dont l'interet me laisse bien pantois.

  27. #26
    inviteaf1870ed

    Re : équation differentielle

    Notre troll la connaît peut être (ou l'examinateur de l'X )

  28. #27
    invite69845a40

    Re : équation differentielle

    Solution fausse!!!! ericc revoit tes calculs idem pour indian58.Indian58 me sermonait comme s'il était mon prof alors qu'il panique sur un déterminant.Navré de te le dire mais c'est pitoyable

  29. #28
    invited5b2473a

    Re : équation differentielle

    Citation Envoyé par farallon Voir le message
    Solution fausse!!!! ericc revoit tes calculs idem pour indian58.Indian58 me sermonait comme s'il était mon prof alors qu'il panique sur un déterminant.Navré de te le dire mais c'est pitoyable
    Panique? Euh...qui vient en pleurant pour demander de l'aide pour une malheureuse équation après deux nuits d'acharnements? Je ne sais pas comment tu as trouvé cette identité de Gauss mais à mon sens, elle fait partie de ces nombreuses stupidités qu'on nous fait ingurgiter en prépa. J'ai fait une prépa et des astuces "de-la-mort-qui-tuent", j'en ai vu un certain nombre. Mais celle-ci, franchement, faut vraiment être débile pour aller la trouver et la retenir. D'autant plus que je vois au-moins deux manières élémentaires pour résoudre ton exo (qui au passage, m'a pris moins de 10' chrono en main alors que je n'ai plus résolu ce genre de problème depuis pas mal d'années). Contrairement à toi, j'ai un peu de recul vis-à-vis de la prépa. Et sincèrement, je te conseille d'oublier de genre de c******es dignes du Merdix et de plus te focaliser sur l'idée sous-jacente. J'exagère peut-être un peu mais pas tant que ça.
    Si tu étais venu en écrivant ton équation de manière un temps soit peu correcte (je ne te demande même pas de l'écrire en latex) et en montrant que tu savais ce qu'était un déterminant, tu aurais été pris un peu plus au sérieux. Mais ton attitude ne m'en donnait pas l'envie et je te présente mes excuses. Quant à dire que c'est un "oral de l'X (X2006)", franchement on s'en fout. Bon, allez le débat est clos et il serait peut-être temps de fermer ce topic.

  30. #29
    invited5b2473a

    Re : équation differentielle

    Citation Envoyé par farallon Voir le message
    idem pour indian58
    Mon calcul est juste.

Discussions similaires

  1. Equation différentielle
    Par invitef17530e3 dans le forum Électronique
    Réponses: 2
    Dernier message: 24/02/2012, 12h01
  2. Réponses: 0
    Dernier message: 24/02/2010, 09h49
  3. Equation différentielle
    Par invite30d552e4 dans le forum Physique
    Réponses: 1
    Dernier message: 30/12/2009, 23h09
  4. Précision sur une recherche de solution unique équation d'une équation différentielle
    Par invite5815a41b dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 11/01/2009, 17h02
  5. équation différentielle
    Par invite0ceebb9d dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 04/10/2006, 11h08