Aide exo TS
Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

Aide exo TS



  1. #1
    inviteae6e334f

    Aide exo TS


    ------

    Bonjour ,j'aurais besoin d'aide avec cet exo de maths
    Je bloque a partir de la question
    Partie B ; 3a/
    Malgré l'indication entre parenthese j'ai du mal a comprendre comment démontrer que si pour tt réel xo on a f(x0)+x0= 0 alors f(x)+x=0 pour tout x
    J'ai essayer par exemple de remplacer ds la relation I
    x par (x-x0)+x0 , je ne sais pas si c'est la bonne voie et a vrai dire je ne suis meme pas sur de ce que je devrais obtenir avec cette démarche ( surement que f(x0)+x0= 0 non? mais si c'etait le cas en quoi cela prouverais que pour tout x ,f(x)+x=0 ?)
    Je nage un peu a ce stade de l'exo j'espere que vous pourrez me donner aide et indication
    merci

    -----
    Images attachées Images attachées  

  2. #2
    invite52c52005

    Re : Aide exo TS

    Bonjour,

    pourtant en utilisant l'indication entre parenthèse et en utilisant la relation I, ça va tout seul.

    Tu as f(x) + x = f((x-x0) + x0) + (x-x0) + x0

    Et c'est là que tu dois utiliser la relation I. C'est un changement de variables.

  3. #3
    invitec314d025

    Re : Aide exo TS

    Citation Envoyé par nissart7831
    Tu as f(x) + x = f((x-x0) + x0)
    Plutôt f(x) + x = f((x-x0) + x0) + (x-x0) + x0

  4. #4
    invite52c52005

    Re : Aide exo TS

    Citation Envoyé par matthias
    Plutôt f(x) + x = f((x-x0) + x0) + (x-x0) + x0
    oui, oui, j'avais complété entre temps. Petit pb de clavier

  5. A voir en vidéo sur Futura
  6. #5
    inviteae6e334f

    Re : Aide exo TS

    f(x+y) +x-y = [f((x-x0)+x0)+(x-x0)+x0][f(y)+y]
    A partir de ca, par calcul je dois reussir a trouver que
    f(x0)+x0 = 0 ?
    Si oui j'aimerais savoir j'avais le droit de toucher au variable des fonctions je veux dire:
    Si je dois prouver f(x0)+x0 = 0 a partir de ca il va donc falloir que je sorte les (x-x0) mais en ai-je le droit?

  7. #6
    invite52c52005

    Re : Aide exo TS

    Citation Envoyé par Xanagol
    f(x+y) +x-y = [f((x-x0)+x0)+(x-x0)+x0][f(y)+y]
    A partir de ca, par calcul je dois reussir a trouver que
    f(x0)+x0 = 0 ?
    Si oui j'aimerais savoir j'avais le droit de toucher au variable des fonctions je veux dire:
    Si je dois prouver f(x0)+x0 = 0 a partir de ca il va donc falloir que je sorte les (x-x0) mais en ai-je le droit?
    Mais tu ne dois pas prouver que f(x0)+x0 = 0. C'est ton hypothèse de départ que je sache.
    Tu dois montrer f(x0) + x0 = 0 => (pour tout x, f(x) + x = 0).

    Et tu dois partir de la relation que je t'ai donné dans le post précédent et tu dois montrer que c'est égal à 0.
    Bien sûr, il faut que tu utilises la relation I sur le 2ème membre de l'égalité que je t'ai donné.

  8. #7
    inviteae6e334f

    Re : Aide exo TS

    Y a t-il une erreur ou le raisonnement est il corect ?

    f(x )+x0=0
    On sait que x=(x-x0)+x0
    => f(x )+x=f((x-x0)+x0)+(x-x0)+x0
    D'après (1): f(x )+x=[f(x-x0)+(x-x0)]*[f(x0)+x0]
    or: f(x0)+x0=0
    donc: f(x )+x=0

    Et j'en profite pour la question suivante. Le prof avait parlait d'une utilisation par l'absurde( en démontrons que f(x)+x n'etait pas egal a 0 ) pour cette question
    3/b/ et j'ai donc
    si f(0)= 1 , demontrons que f(x) +x = 0
    En prenant x=0 on a donc
    f(0) + 0 = 1 car f(0)=0 ---> absurde donc
    f(x)+x pas = a 0
    Mais je ne comprend pas pourquoi en demontrant cela je prouverais que f(x)+x > 0 et qu'il ne pourrait , par exemple etre < a 0
    J'espere que vous avez suivi la ou je suis perdu
    merci

  9. #8
    invite52c52005

    Re : Aide exo TS

    Citation Envoyé par Xanagol
    Y a t-il une erreur ou le raisonnement est il corect ?

    f(x )+x0=0
    On sait que x=(x-x0)+x0
    => f(x )+x=f((x-x0)+x0)+(x-x0)+x0
    D'après (1): f(x )+x=[f(x-x0)+(x-x0)]*[f(x0)+x0]
    or: f(x0)+x0=0
    donc: f(x )+x=0
    OK

    Citation Envoyé par Xanagol
    Et j'en profite pour la question suivante. Le prof avait parlait d'une utilisation par l'absurde( en démontrons que f(x)+x n'etait pas egal a 0 ) pour cette question
    3/b/ et j'ai donc
    si f(0)= 1 , demontrons que f(x) +x = 0
    En prenant x=0 on a donc
    f(0) + 0 = 1 car f(0)=0 ---> absurde donc
    f(x)+x pas = a 0
    Mais je ne comprend pas pourquoi en demontrant cela je prouverais que f(x)+x > 0 et qu'il ne pourrait , par exemple etre < a 0
    J'espere que vous avez suivi la ou je suis perdu
    merci
    Tu as juste démontré qu'il existait un x (en l'occurence 0) tel que


    Or, on te demande de démontrer que c'est vrai pour tout x .
    Je te suggère d'utiliser la relation (I) avec 0 par exemple en l'ecrivant 0=x-x.

    Pour conclure sur le signe, jette un oeil sur quelque chose que tu as déjà démontré dans les questions précédentes (la 1/ pour ne pas le dire).

Discussions similaires

  1. aide a un exo
    Par invitea927f9cf dans le forum Chimie
    Réponses: 9
    Dernier message: 28/03/2007, 18h51
  2. Aide exo Barycentre Ts
    Par invitedf2db431 dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 06/03/2007, 20h31
  3. Besoin aide exo ...
    Par invite2f416c20 dans le forum Chimie
    Réponses: 3
    Dernier message: 17/09/2006, 21h25
  4. Aide Exo Chimie TS
    Par invitef40fe967 dans le forum Chimie
    Réponses: 7
    Dernier message: 03/01/2006, 16h10
  5. [exo] aide ?
    Par invite9fee6abf dans le forum Chimie
    Réponses: 3
    Dernier message: 19/10/2005, 15h53