A la recherche de la démonstration de Fermat.
Répondre à la discussion
Affichage des résultats 1 à 13 sur 13

A la recherche de la démonstration de Fermat.



  1. #1
    invite5f52a886

    A la recherche de la démonstration de Fermat.


    ------

    Bonsoir,

    Voici une voie vers la démonstration de Fermat :

    http://viXra.org/abs/1304.0070 puis cliquer sur PDF .

    Bonne lecture.

    Cordialement
    Ahmed Idrissi Bouyahyaoui

    -----

  2. #2
    Paraboloide_Hyperbolique

    Re : A la recherche de la démonstration de Fermat.

    Bonsoir,

    Par curiosité plutôt morbide j'ai regardé votre document: la démonstration est fausse à la première ligne. n'implique pas .

    Ce théorème a par ailleurs été démontré (et vérifié) il y a une dizaine d'année par Andrew Wiles: http://math.stanford.edu/~lekheng/flt/wiles.pdf

  3. #3
    invite5f52a886

    Re : A la recherche de la démonstration de Fermat.

    Bonsoir,

    X=x+u, Y=x+v, w=u+v et Z=X+Y-x ==> Z=x+w .

    Fermat a affirmé avoir découvert la démonstration qui tient sur quelques lignes.
    C'est intéressant n'est-ce pas ?

  4. #4
    Paraboloide_Hyperbolique

    Re : A la recherche de la démonstration de Fermat.

    Bonjour,

    Ok, à condition que w dépende de x: , ce qui invalide la ligne car:

    car (au moins)

    Je soupçonne que vous considérez u, v, w comme des constantes par rapport à x, ce qui n'est pas le cas. En effet, comme vous supposez que et que , calculer les expressions de u', v' et w' est non-trivial (je soupçonne que c'est impossible).

  5. A voir en vidéo sur Futura
  6. #5
    invite5f52a886

    Re : A la recherche de la démonstration de Fermat.

    Bonjour,

    C'est tout simple :
    u, v et w=u+v sont des entiers positifs fixés pour tout triplet (X, Y, Z) de l'équation X^n + Y^n = Z^n et x est un nombre réel positif.

  7. #6
    invite5f52a886

    Re : A la recherche de la démonstration de Fermat.

    (précision)


    u, v et w=u+v sont des entiers positifs fixés pour tout triplet (X, Y, Z) de l'équation Xn + Yn = Zn et x est un nombre réel positif.

    x=X+Y-Z, u=Z-Y, v=Z-X, X=x+u, Y=x+v, Z=x+w .

    Donc (Z-Y) et (Z-X) sont des entiers positifs fixés pour tout triplet (X, Y, Z) de l'équation Xn + Yn = Zn et (X, Y, Z) € Eu,v si Z-Y=u, Z-X=v .

  8. #7
    Paraboloide_Hyperbolique

    Re : A la recherche de la démonstration de Fermat.

    Bonsoir,

    Citation Envoyé par AIB Voir le message
    u, v et w=u+v sont des entiers positifs fixés pour tout triplet (X, Y, Z) de l'équation Xn + Yn = Zn et x est un nombre réel positif.
    Merci de ces précisions.

    Cependant, tel que je comprend vos calculs, u, v, et w dépendent de x. En effet, si u, v, w, dépendent de (X, Y, Z), alors ils dépendent de x = X+Y-Z. Tout variation de x implique une variation d'au moins soit X, soit Y ou soit Z. Ce qui implique une variation d'au moins u, v, ou w. Ce qui implique que la formule n'est pas correcte (voir mon message précédent).

  9. #8
    invite5f52a886

    Re : A la recherche de la démonstration de Fermat.

    Bonsoir,

    On peut se passer des préliminaires et poser directement :

    Pn(x) = (x+u)n + (x+v)n - (x+w)n

    (u, v) € N+2 , w =u+v, u, v des constantes et x une variable réelle positive .

    Mais je me suis aperçu un peu tard du vrai problème :

    n impair, n+1=4k ou n-1=4k

    (x+u)4k = (x+u)2 [3] si (x+u) est un entier.

    Donc pour l'instant c'est l'impasse.

  10. #9
    invite33c0645d

    Re : A la recherche de la démonstration de Fermat.

    Je me doute bien que mon commentaire n'apporte rien du tout, mais avez-vous déjà lu un document de maths (disons de niveau master) ? Je sais qu'il ne faut pas s'attendre à de belles démonstrations sur ce genre de forum, mais quand même... Vous pensez avoir une preuve du grand théorème de Fermat en quelques lignes (comme le proposait Fermat lui-même), le minimum serait qu'elle soit claire (quitte à ajouter quelques lignes de plus).

  11. #10
    invite7c2548ec

    Re : A la recherche de la démonstration de Fermat.

    Bonsoir à tous :

    Je suis pas spécialiste en théories des nombres mais y'a ce ci Dernier théorème de Fermat.
    démonstration de Gerhard Frey.

    Amicalement

  12. #11
    invite5f52a886

    Re : A la recherche de la démonstration de Fermat.

    @Suite2 : peut-être pourriez-vous m'indiquer les références d'un document qui traite essentiellement de la congruence sur les irrationnels algébriques.

  13. #12
    invite33c0645d

    Re : A la recherche de la démonstration de Fermat.

    Je ne suis pas certain de comprendre ce que vous entendez par congruence des irrationnels algébriques (du moins dit comme cela rien ne remontre à mon cerveau bien trop lent). En revanche, si j'ai compris ce que vous entendez par cela, voici trois documents,

    http://archive.numdam.org/ARCHIVE/NA..._13__245_1.pdf, HEINE
    http://www.math.u-psud.fr/~paulin/pr...s/Bordeaux.pdf, PAULIN
    http://www.math.jussieu.fr/~polo/M1/ATG07chV.pdf, Patrick POLLO (résumé de cours)
    http://www.math.ens.fr/~debarre/Algebre2.pdf, DEBARRE (lire à partir de III, I et II étant des prérequis classiques)

    Bref, je passerai plus de temps à vous fournir des documents, si vous le souhaitez, et surtout si je comprend bien ce que vous cherchez! Pour moi congruence d'irrationnels algébrique veut dire "Etude des idéaux de l'extension de corps associé à un irrationnel algébrique".

  14. #13
    invite5f52a886

    Re : A la recherche de la démonstration de Fermat.

    @Suite2 : merci pour la documentation, je vais regarder tout ça de près.

Discussions similaires

  1. Démonstration du petit théorème de Fermat
    Par invite22101dc3 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 22/04/2013, 22h25
  2. Une démonstration analytique du théorème de Fermat
    Par invitede6b99d6 dans le forum Mathématiques du supérieur
    Réponses: 16
    Dernier message: 29/09/2011, 14h15
  3. Une démonstration du théorème de Fermat ?
    Par invited8a491cb dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 12/05/2010, 21h07
  4. colossale demonstration du theoreme de Fermat
    Par invite4abe9189 dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 23/03/2009, 23h03
  5. Démonstration du Grand Théorème de Fermat
    Par danyvio dans le forum Discussions scientifiques
    Réponses: 1
    Dernier message: 23/12/2007, 10h52