Pourquoi si est algébrique sur , alors contient une base de transcendance de ?
Merci d'avance.
-----
09/08/2014, 17h29
#2
acx01b
Date d'inscription
avril 2004
Localisation
paris
Messages
2 342
Re : Extension algebrique
tu comprends ce qu'est une base de transcendance ? moi non
tu as un exemple de base de transcendance (dans un corps simple genre ou ou ) ?
clairement ton exo commence par ça : comprendre la définition et trouver un exemple pour se faire une idée d'où vient le concept.
et je repose ma question : c'est quoi le/les cours que tu suis ? c'est pour quel diplôme ?
et pourquoi tu poses tant de questions sur le forum ? tu n'arrives à trouver les solutions seul ? tu n'as pas un corrigé ? en cherchant sur le net tu ne trouves pas les réponses ?
enfin bon voila
Dernière modification par acx01b ; 09/08/2014 à 17h32.
09/08/2014, 17h52
#3
invitecbade190
Date d'inscription
janvier 1970
Messages
2 577
Re : Extension algebrique
Je ne suis pas assez familier avec cette notion.
- est algébriquement indépendants sur , si le morphisme naturlel : est bijectif, c'est à dire si les n'annulent aucun polunomne non trivial sur .
- Un famille est une base de transcendance de , si est algébriquement indépendants, et si elle est la maximale parmi toutes les familles algébriquement indépendants.
Exemple : J'entends dire que est une base de transcendance de , mais, je ne sais pas pourquoi.
Je suis un cours d'algèbre commutative pour préparer mon M1, ensuite mon M2 si je réussis M1.
Je pose tant de questions sur le forum pour me familiariser assez avec ces notions avancées en algèbre.
Je ne trouves pas de solutions sur le net. Je n'ai pas de corrigé.
Je n'arrive pas à trouver les solutions seuls.
Cordialement.
09/08/2014, 17h55
#4
acx01b
Date d'inscription
avril 2004
Localisation
paris
Messages
2 342
Re : Extension algebrique
donc en gros le corps (on se comprend) dont les éléments s'écrivent où sa base de transcendance c'est ?
Dernière modification par acx01b ; 09/08/2014 à 17h57.
Aujourd'hui
A voir en vidéo sur Futura
09/08/2014, 18h01
#5
acx01b
Date d'inscription
avril 2004
Localisation
paris
Messages
2 342
Re : Extension algebrique
tu vas trouver ça désagréable mais quand on fait un master de Maths on est censé être capable de chercher tout seul les réponses aux questions (en s'aidant du net pourquoi pas) si la question n'est pas trop compliquée (je ne parle pas du grand théorème de Fermat, mais de questions dont c'est faisable de trouver la réponse / la démonstration).
en te faisant aider systématiquement sur le forum je ne suis pas sûr que tu fasses ce qu'on attend de toi : chercher tout seul au maximum.