Norme matricielle subordonnée à une norme vectorielle.
Répondre à la discussion
Affichage des résultats 1 à 20 sur 20

Norme matricielle subordonnée à une norme vectorielle.



  1. #1
    Lucien-O.

    Norme matricielle subordonnée à une norme vectorielle.


    ------

    Bonjour,

    visiblement ma question admet une réponse triviale car les documents que je consulte élude la raison de l'égalité suivante :



    D'où cela vient-il svp ?

    -----

  2. #2
    acx01b

    Re : Norme matricielle subordonnée à une norme vectorielle.

    est la norme euclidienne (la norme habituelle)

    après la question c'est est-ce que est une norme sur l'espace vectoriel des matrices ?
    il suffit de vérifier les propriétés :
    https://fr.wikipedia.org/wiki/Norme_...iel_quelconque
    Dernière modification par acx01b ; 09/08/2014 à 19h34.

  3. #3
    Médiat

    Re : Norme matricielle subordonnée à une norme vectorielle.

    Bonjour,

    Est-ce que ce ne serait pas plutôt :



    Si vous prenez un vecteur tel que , que pouvez-vous dire du vecteur ?
    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

  4. #4
    Lucien-O.

    Re : Norme matricielle subordonnée à une norme vectorielle.

    Merci à vous deux!

    Quant à la question f est-il une norme, ça semble aller de soi (j'ai quand même refais le truc formellement) étant donné qu'on retombe sur une norme vectorielle...

    Effectivement médiat, j'avais oublié d'inscrire la norme dans .

    Si on multiplie par l'inverse de sa norme on le normalise...

    Mais je ne vois pas encore d'où sort l'égalité...

  5. A voir en vidéo sur Futura
  6. #5
    Lucien-O.

    Re : Norme matricielle subordonnée à une norme vectorielle.

    Ah! Attendez, ce ne serait pas simplement que ce qui revient à appliquer à un vecteur de norme 1...

  7. #6
    Médiat

    Re : Norme matricielle subordonnée à une norme vectorielle.

    Je l'aurais écrit :

    Mais c'est bien l'idée
    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

  8. #7
    Lucien-O.

    Re : Norme matricielle subordonnée à une norme vectorielle.

    Oui, votre écriture est plus nette! J'aurais du chercher un peu plus...A quelques jours de la seconde session d'examens la pression brouille la pensée.
    Aha, en tout cas merci bcp et bonne soirée Médiat.

  9. #8
    acx01b

    Re : Norme matricielle subordonnée à une norme vectorielle.

    ton argument pour dire que c'est bien une norme me semble assez louche

    je t'ai dit il faut vérifier les 3 propriétés !

    le sup de la norme de avec norme de égale 1, je ne vois pas comment tu peux en déduire directement (donc sans vérifier "à la main" les 3 propriétés) que c'est bien une norme

    et autre question : tu en penses quoi ?
    Dernière modification par acx01b ; 09/08/2014 à 20h44.

  10. #9
    Lucien-O.

    Re : Norme matricielle subordonnée à une norme vectorielle.

    Donc, les trois propriétés sont linéarité, homogénéité (de degré 1) et inégalité triangulaire n'est-ce pas?
    Je ne vois pas bien en quoi mon argument est louche...Puisque le résultat qui est renvoyé par f est une norme vectorielle vérifiant ces trois propriétés. Et, si je suis mon idée jusqu'au bout alors je dirais que g(A) est également une norme, pour les mêmes raisons que précédemment...

  11. #10
    acx01b

    Re : Norme matricielle subordonnée à une norme vectorielle.

    il faut le vérifier qu'elle vérifie les 3 propriétés, il faut le démontrer quoi

    comment tu le démontres ?

    tu ne peux pas mettre sur une copie "ça se voit qu'elle vérifie les 3 propriétés" tu auras 0 à l'exo sinon
    Dernière modification par acx01b ; 09/08/2014 à 21h08.

  12. #11
    Lucien-O.

    Re : Norme matricielle subordonnée à une norme vectorielle.

    On devrait donc écrire :

    1) Homogénéité :


    2)Inégalité triangulaire (sous linéarité???) :

    Ce serait l'idée?

    En fait, je ne discerne pas bien les trois propriétés essentielles dans wiki... Et mon cours (d'introduction à l'algèbre linéaire) ne les présentait pas. Quelle est la troisième propriété?
    Dernière modification par Lucien-O. ; 09/08/2014 à 21h33.

  13. #12
    acx01b

    Re : Norme matricielle subordonnée à une norme vectorielle.

    ok et pour ta norme de départ, f ? les arguments sont un peu plus compliqué à cause du "sup".
    et la propriété de "sépération" (j'ai plutôt envie de l'appeler intégrité : si norme et 0 alors A = 0, ça me fait penser à la notion d'anneau intègre : si A x B = 0 alors A=0 ou B=0. note que l'anneau (l'ensemble) des matrices n'est pas intègre, on peut avoir une matrice C = AxB = 0 sans que A ni B = 0) ?

    et qu'est-ce qui te pose problème avec ces 3 propriétés ? c'est juste des propriétés très théoriques, au départ on avait la norme euclidienne et on a cherché les propriétés qui faisaient que c'était une norme, une espèce de distance quoi, de mesure, qui puisse servir
    Dernière modification par acx01b ; 09/08/2014 à 21h38.

  14. #13
    Lucien-O.

    Re : Norme matricielle subordonnée à une norme vectorielle.

    Ah c'est la troisième alors(oui je la connaissais)! Et finalement, inégalité triangulaire = sous linéarité?

  15. #14
    acx01b

    Re : Norme matricielle subordonnée à une norme vectorielle.

    sur wikipedia c'est écrit : sous-additivité (appelée également inégalité triangulaire)
    c'est moi qui ai ajouté la parenthèse avant ils n'avaient mis que "sous-additivité " alors qu'en général en cours on parle de l'inégalité triangulaire

    https://fr.wikipedia.org/wiki/Norme_...iel_quelconque

  16. #15
    Lucien-O.

    Re : Norme matricielle subordonnée à une norme vectorielle.

    Bin, alors, pour g, l'intégrité donne : donc tq on impose est l'application nulle.
    On conclut g(A) est bien une norme.

    Le travail est de même acabit pour f.

  17. #16
    acx01b

    Re : Norme matricielle subordonnée à une norme vectorielle.

    Citation Envoyé par Lucien-O. Voir le message
    Et mon cours (d'introduction à l'algèbre linéaire) ne les présentait pas.
    bof, ça m'étonnerait que vous parliez de normes bizarres sur l'E.V. des matrices sans définir ce qu'est une norme sur un espace vectoriel du point de vue théorique

    tu peux lire ça aussi : https://fr.wikipedia.org/wiki/Espace...iel_norm%C3%A9

    au fait je te conseille de toujours jeter un coup œil au net (au moins à wikipedia) en plus de tes cours, par exemple à la fin du chapitre tu regardes les autres cours sur internet pour comparer, voir si tu as tout fait ou juste une partie, voir quel est le niveau des exos, etc.
    Dernière modification par acx01b ; 09/08/2014 à 21h48.

  18. #17
    Lucien-O.

    Re : Norme matricielle subordonnée à une norme vectorielle.

    J'essaierai de suivre le conseil, mais le temps n'est pas extensible malheureusement et je n'ai malheureusement (bis) pas encore totalement mordu aux mathématiques (j'essaie hein!).

    Sinon, vous aviez raison, les propriétés étaient présentées, mais ce n'était pas annoncé nettement ou du moins je n'y avais pas prêté une attention soutenue.

    Le sup change-t-il vraiment quelque chose? Quoiqu'il en soit, je vous remercie de m'avoir accordé votre temps!

  19. #18
    acx01b

    Re : Norme matricielle subordonnée à une norme vectorielle.

    Citation Envoyé par Lucien-O. Voir le message
    Le sup change-t-il vraiment quelque chose?
    ouai pour l'inégalité triangulaire

  20. #19
    invitec998f71d

    Re : Norme matricielle subordonnée à une norme vectorielle.

    Il n'y a pas une norme unique associée à un opérateur sur un espace de topologie donnée:
    http://en.wikipedia.org/wiki/Operator_topologies
    c'est en anglais mais l'éqivalent francais est moins lisible:
    http://wikipedia.qwika.com/en2fr/Top..._Hilbert_space

  21. #20
    acx01b

    Re : Norme matricielle subordonnée à une norme vectorielle.

    Citation Envoyé par Murmure-du-vent Voir le message
    Il n'y a pas une norme unique associée à un opérateur sur un espace de topologie donnée
    là c'est clair vu qu'on parle d'une norme bizarre sur les matrices, sachant qu'il existe aussi la norme Euclidienne.

Discussions similaires

  1. Norme matricielle subordonnée
    Par invitefc043461 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 24/02/2012, 23h29
  2. Norme vectorielle qui n'est pas une norme matricielle !
    Par ichigo01 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 14/09/2011, 17h54
  3. norme subordonnée
    Par invite5478c9cd dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 25/04/2008, 13h39
  4. Calcul de norme subordonnée
    Par invite962bb108 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 05/10/2007, 11h18
  5. Norme d'algèbre, norme subordonnée
    Par invitea87a1dd7 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 27/10/2006, 16h33