Bonjour,
Pourquoi dans le spectre de fréquence d'une fonction je peux avoir des fréquences négatives ?
Qu'est-ce que cela signifie?
exemple cos(2*pi*t):
pourquoi a 1 rad/s j'ai une amplitude de pi ?
Merci d'avance.
-----
Bonjour,
Pourquoi dans le spectre de fréquence d'une fonction je peux avoir des fréquences négatives ?
Qu'est-ce que cela signifie?
exemple cos(2*pi*t):
pourquoi a 1 rad/s j'ai une amplitude de pi ?
Merci d'avance.
Le spectre continu est donné par la transformée de Fourier :
Les fréquences négatives découlent de cet exercice purement mathématique.
Bonjour,
En maths, une fréquence est définie comment?
Peut-elle être négative? (et comment l'appelle-t-on alors?)
Merci.
Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».
Bonjour Shero1040.
La notion de "fréquence" utilisée dans la transformation de Fourier n'est pas celle élémentaire qu'on voit en lycée. C'est en fait le d'une fonction obtenue dans la décomposition d'une fonction. Or
Et tu vois apparaître les deux valeurs 1 et -1.
Cordialement.
NB : je n'ai pas développé l'ensemble de la théorie mathématique qui fait qu'on peut trouver ces fréquences pour une fonction périodique, c'est simplement les séries de Fourier complexes.
Merci pour vos réponses.
Je croyais que je pouvais tracer le signal f(t) rien que regardant sont spectre de fréquence.
Pour rappel: cos(wt) ne peux pas être calculé à partir de la transformée de Fourier
Ah non !
Même avec spectre de fréquence et spectre d'amplitude (*), c'est délicat.
Cordialement.
Bonjour,
Il doit manqué le (*).
Par transformée de Fourier inverse du spectre complexe, on retrouve bien la fonction cos. Non? Il y a des conditions supplémentaires?
TF-1
Je ne sais pas si tu as vu ce fil sur physique :
http://forums.futura-sciences.com/ph...amplitude.html
Si des mathématiciens de ce forum trouvent qu'il y a des énormités mathématiques intolérables dans ce fil, merci de me les signaler.
(C'est des maths avec la rigueur d'un ingénieur . )
Cordialement.
Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».
"Il doit manqué (sic) le (*)." Non, j'ai pensé faire une incidente, j'ai simplement oublié d'éliminer le (*).
Effectivement, dans des cas très simples, les deux spectres suffisent. Mais dans le cas général, c'est plus douteux. Pas du point de vue mathématique, mais dans la pratique. Ne serait-ce que parce qu'on a seulement une partie du signal (on mesure pendant un certain temps, pas éternellement), ce qui amène à faire des suppositions supplémentaires (nul ailleurs, ou périodique, ou ...) et qu'on n'est pas capable de mesurer en continu (échantillonnage).
N'étant pas spécialiste, je me garderai de me prononcer sur le fil de physique que tu signales, mais j'ai plutôt tendance à être d'accord avec toi sous la forme : Dans le spectre de cos il y a deux fréquences (sens spectre) opposées qui correspondent à une seule fréquence (sens lycée) de la fonction cos puisque ajouter 2 pi ou soustraire 2pi donne le même résultat : aucun changement de valeur.
Le reste est des habitudes, qu'il faut savoir changer au besoin.
Cordialement.
Y-a-til une branches des maths qui s'occupe plus spécialement de ces spectres fréquentiels ou signaux temporel tronqués, ou bien encore de leur enveloppe? (Genre causalité, analycité, transformée de Hilbert, etc...)Effectivement, dans des cas très simples, les deux spectres suffisent. Mais dans le cas général, c'est plus douteux. Pas du point de vue mathématique, mais dans la pratique. Ne serait-ce que parce qu'on a seulement une partie du signal (on mesure pendant un certain temps, pas éternellement), ce qui amène à faire des suppositions supplémentaires (nul ailleurs, ou périodique, ou ...) et qu'on n'est pas capable de mesurer en continu (échantillonnage).
Je n'ai jamais eu que des cours de maths appliquées pour le cas particulier et rien dans les grandes lignes.
Je n'ai jamais vu la définition de la fréquence au sens spectre.N'étant pas spécialiste, je me garderai de me prononcer sur le fil de physique que tu signales, mais j'ai plutôt tendance à être d'accord avec toi sous la forme : Dans le spectre de cos il y a deux fréquences (sens spectre) opposées qui correspondent à une seule fréquence (sens lycée) de la fonction cos puisque ajouter 2 pi ou soustraire 2pi donne le même résultat : aucun changement de valeur.
Sur le fil en question, il est question du "sens physique" (que pas un physicien n'arrive à définir)
J'espérais qu'en restant en math, ce serait un peu plus clair.
Médiat m'a dit qu'une période était positive, et du coup, je pose la question pour une fréquence ou une pulsation.
Ce genre de gag empoisonne un peu la vie car il y a plein de sous entendu soit disant évident.
Visiblement, ce n'est pas facile pour tout le monde.
Perso, je m'adapte, mais j'aime aussi la cohérence.
Cordialement.
Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».
La branche des maths (appliquées) que je connais pour s'occuper de ce genre de choses ( spectres fréquentiels ou signaux temporel tronqués, ...) est le traitement de signal. Il existe des ouvrages très mathématisés, d'autres moins (un chercheur australien que j'ai fréquenté avait fait un ouvrage où il faisait du spectre "avec les mains"). Mais j'ai seulement côtoyé les chercheurs, eu beaucoup de discussion, sans me former vraiment (j'avais assez à faire à côté).
Pour la notion de fréquence, la TF est souvent considérée comme un passage temps/fréquence, avec donc des valeurs négatives de la fréquence. Je ne vois pas de problème particulier, si on ne limite pas la notion de fréquence à sa définition mathématique traditionnelle (qui fait qu'une période étant définie comme un nombre positif, la fréquence est positive) : Après tout, c'est une simple question de choix de définition. ici, on appelle fréquence la variable de la TF d'un signal temporel.
C'est d'autant moins gênant qu'on va appliquer la TF à des fonctions non périodiques. Donc la notion de fréquence n'est pas celle associée à une fonction périodique; même si on la retrouve d'une certaine façon avec les fonctions périodiques (pas de sens physique) ou presque périodique.
Pour aller plus loin, il faudrait voir des chercheurs du domaine.
Cordialement.
Merci.
Bien qu'ayant suivi ce genre de formation, je n'ai découvert que récemment les notions d'analycité, de relèvement et d'autres petites choses qui m'ont manquées.
Cordialement.
Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».