un maximum global - Page 2
Répondre à la discussion
Page 2 sur 3 PremièrePremière 2 DernièreDernière
Affichage des résultats 31 à 60 sur 61

un maximum global



  1. #31
    invite51d17075
    Animateur Mathématiques

    Re : un maximum global


    ------

    est ce contradictoire avec mes propos ?
    et encore une fois, quel rapport avec les compacts ?????

    -----

  2. #32
    invite47ecce17

    Re : un maximum global

    Le rapport avec les compact c'est que pour s'assurer l'existence d'une maximum l'hypothese de compacité des segments est suffisante.
    Comme on vous a dit il y a des tas de fonctions continues bornés et qui n'ont pas de maximum. Ou des tas de fonctions bornée sur un compact mais qui n'ont pas de maximum.
    Les deux hypotheses sont suffisantes, pour s'assurer de l'existence d'un maximum, continue et définie sur un compact. Mais enlever une des deux fait perdre la suffisance (dit autrement les deux hypotheses sont necessaire à la suffisance du critère ).


    Pour vous dire pourquoi ce que vous proposez fonctionne/ne fonctionne aps, il faudrait le detailler parce qu'en l'etat vous n'avez pas donné de preuve. Et la manière la plus naturelle de completer votre preuve est justement d'utiliser la compacité des segments (ou ce qui revient au meme le fait que l'image d'un segment soit bornée et fermée).

  3. #33
    invite51d17075
    Animateur Mathématiques

    Re : un maximum global

    Citation Envoyé par MiPaMa Voir le message
    Pour vous dire pourquoi ce que vous proposez fonctionne/ne fonctionne aps, il faudrait le detailler parce qu'en l'etat vous n'avez pas donné de preuve. Et la manière la plus naturelle de completer votre preuve est justement d'utiliser la compacité des segments (ou ce qui revient au meme le fait que l'image d'un segment soit bornée et fermée).
    mais enfin R+ n'est ni un segment, ni un ensemble fini de segments finis.
    soyez plus claire, enfin ...

  4. #34
    invite47ecce17

    Re : un maximum global

    Dit autrement, ça
    Citation Envoyé par ansset Voir le message
    supposons que f n'ai pas de valeur maximale.
    cela suppose qu'il existe tj un point x ou f(x)>a quel que soit a.
    C'est faux.

  5. #35
    invite47ecce17

    Re : un maximum global

    Citation Envoyé par ansset Voir le message
    mais enfin R+ n'est ni un segment, ni un ensemble de segments finis.
    soyez plus claire, enfin ...
    Certes, mais on s'en fout que R+ ne soit pas un segment, puisqu'on utilise pas la propriété en question sur R+ mais sur [0,a] pour un a bien choisi.

    Voir la preuve de Tryss
    Citation Envoyé par Tryss2 Voir le message
    Donc l'idée de la démo c'est :
    1) si 0 est un maximum => la propriété est vraie
    2) si 0 n'est pas maximum il existe un t tel que f(t) > 0. On en déduit par la définition de la limite de f qu'il existe un intervalle [0,y] tel qu'en dehors, f(x) < f(t)/2. Puis on applique le théorème des bornes à cet intervalle
    Le a bien choisi en question c'est le y.

  6. #36
    invite51d17075
    Animateur Mathématiques

    Re : un maximum global

    très bien,
    j'attend une démo "très propre" ......

  7. #37
    Amanuensis

    Re : un maximum global

    Citation Envoyé par ansset Voir le message
    mais enfin R+ n'est ni un segment, ni un ensemble fini de segments finis.
    La discussion tourne en rond.

    Quelle est l'utilité de répéter les mêmes remarques? Cela n'appelle que les mêmes réponses!

    La discussion contient toutes les informations utiles, on peut arrêter là.

    j'attend une démo "très propre" .....
    À quel titre cette exigence???

    (En plus elle est déjà donnée...)
    Pour toute question, il y a une réponse simple, évidente, et fausse.

  8. #38
    invite47ecce17

    Re : un maximum global

    Citation Envoyé par ansset Voir le message
    très bien,
    j'attend une démo "très propre" ......
    Elle a été donnée par Tryss.

  9. #39
    invite51d17075
    Animateur Mathématiques

    Re : un maximum global

    Citation Envoyé par MiPaMa Voir le message
    Elle a été donnée par Tryss.
    non, il s'est réduit des compacts , non ?

  10. #40
    invite47ecce17

    Re : un maximum global

    Huh??

  11. #41
    invite23cdddab

    Re : un maximum global

    Citation Envoyé par ansset Voir le message
    non, il s'est réduit des compacts , non ?
    Je n'ai pas compris ce que tu essayes de dire.
    - Si c'est que je me suis servi du fait que [0,a] est compact pour prouver que f atteint un maximum sur [0,a], je doute qu'on puisse faire autrement.
    - Si c'est parce que tu penses que je n'ai prouvé la proposition que sur un compact, tu te trompes, et tu devrais relire plus attentivement ma preuve.
    - Si c'est encore autre chose, il faudra expliciter

  12. #42
    invite47ecce17

    Re : un maximum global

    Pour le fun voici une autre démo utilisant la compacité (bon certainement pas celle qui était attendu en L1).
    Soit le compactifié d'alexandroff de R+. Les voisinages de choucroute étant les complémentaires des compacts par définition. C'est un espace compact et f se prolonge en un fonction continue dessus, notée g.
    Comme est compact g a un maximum dessus. Soit c'est g(choucroute) mais comme g(choucroute)=g(0) alors g(0) est un maximum de g. Soit ce maximum est atteint en un point de R et dans les deux cas on a exhibé un maximum de f sur R.

  13. #43
    invite51d17075
    Animateur Mathématiques

    Re : un maximum global

    merci de me foutre de moi.
    R+ n'est pas un compact.

  14. #44
    invite47ecce17

    Re : un maximum global

    Vous trollez ou bien? Personne ici n'a dit que R+ etait compact. Ce qu'il n'est pas.

  15. #45
    Amanuensis

    Re : un maximum global

    Citation Envoyé par MiPaMa Voir le message
    Pour le fun (...) Soit c'est g(choucroute) mais comme g(choucroute)=g(0) alors g(0) est un maximum de g. Soit ce maximum est atteint en un point de R et dans les deux cas on a exhibé un maximum de f sur R.
    Joli!.......
    Pour toute question, il y a une réponse simple, évidente, et fausse.

  16. #46
    invite47ecce17

    Re : un maximum global

    Merci, on peut d'ailleurs rendre la chose moins pompeuse (et accesible en première année du coup) en considérant g=f\circ tan(x) pour x dans [0,\pi/2[. Comme tan est strictement croissante f admet un maximum ssi g admet un maximum et g est une brave fonction sur [0,\pi/2[ qui est prolongeable par continuité en \pi/2 puisqu'elle y a une limite finie. Comme g(0)=g(\pi/2) g admet un maximum sur [0,\pi/2[ et donc f aussi.

    Bref plein de variations imaginables.

  17. #47
    invite50381129

    Re : un maximum global

    Merci les amies pour votre reponses mais je comprend pas pourquoi on a besoin dutuliser la notion des compacts et aussi cest pas dans le programme (niveau classe prepas) tous ce que jai est une assertion a montrer avant cette question qui dit montrer si f admet une limite finie en +linfine alors f est bornee
    et dans la demonstration je pense que je dois utuliser le fait que f(0)=0 et lim en linfinie =0

  18. #48
    Amanuensis

    Re : un maximum global

    Citation Envoyé par marcrener Voir le message
    et dans la demonstration je pense que je dois utuliser le fait que f(0)=0 et lim en linfinie =0
    Dans la démonstration pour le maximum, oui. (Pas pour la démo pour bornée.)

    Facile de trouver un contre-exemple si la limite en +infini est strictement supérieure à f(0).

    aussi cest pas dans le programme (niveau classe prepas)
    Ah!
    Dernière modification par Amanuensis ; 26/11/2015 à 22h03.
    Pour toute question, il y a une réponse simple, évidente, et fausse.

  19. #49
    gg0
    Animateur Mathématiques

    Re : un maximum global

    Pour Ansset, je reprends la preuve en entier :

    Si alors 0 est un maximum global, atteint en 0.
    Sinon, il existe un réel a tel que b=f(a)>0. Du fait que la limite à l'infini est nulle, il existe un réel A tel que
    (1)
    [0,A] est un intervalle fermé borné sur lequel f est continue. Donc f([0,A]) est un intervalle fermé borné [B,C] et en particulier, il existe c tel que f(c)=C et pour tout x de [0,A] . Comme on a , donc, en tenant compte de (1) :

    Donc en C, f présente un extremum global.

    Sauf erreur de frappe ou omission.

  20. #50
    gg0
    Animateur Mathématiques

    Re : un maximum global

    Marcrener,

    je lis dans le programme de prépa PCSI :
    Image d’un intervalle par une fonction continue.
    Une fonction continue sur un segment est bornée et atteint
    ses bornes.

    Même chose en MPSI et PTSI.

    Cordialement.

  21. #51
    invite51d17075
    Animateur Mathématiques

    Re : un maximum global

    Citation Envoyé par gg0 Voir le message
    Marcrener,

    je lis dans le programme de prépa PCSI :
    Image d’un intervalle par une fonction continue.
    Une fonction continue sur un segment est bornée et atteint
    ses bornes.

    Même chose en MPSI et PTSI.

    Cordialement.
    il me semble que c'était le sens de mes propos.
    sans passer par les compacts.
    est ce drosophilesque ?

  22. #52
    gg0
    Animateur Mathématiques

    Re : un maximum global

    Effectivement.

    Si tu voulais dire que parler de compacts est inutile ici puisqu'on a le théorème sur l'image d'un segment fermé borné, c'est dit depuis longtemps (message #10, de Tryss). Si tu as compris depuis le début que ce théorème (forme simple d'un théorème sur les compacts) permet de conclure, il est difficile de comprendre tes interventions ultérieures.

    En tout cas, cet exercice est une application classique des théorèmes sur limites et continuité. Où l'on utilise le fait que [0,A] est un compact sans le dire

    Cordialement.

  23. #53
    invite9dc7b526

    Re : un maximum global

    Simple curiosité : comment est-ce qu'on démontre en prépa ce théorème : l'image continue d'un intervalle fermé borné est un intervalle fermé borné ? Est-ce qu'on utilise sans le dire une des caractérisations des parties compactes? (toute suite a un point d'accumulation)

  24. #54
    invite51d17075
    Animateur Mathématiques

    Re : un maximum global

    Citation Envoyé par gg0 Voir le message
    Effectivement.

    Si tu voulais dire que parler de compacts est inutile ici puisqu'on a le théorème sur l'image d'un segment fermé borné, c'est dit depuis longtemps (message #10, de Tryss). Si tu as compris depuis le début que ce théorème (forme simple d'un théorème sur les compacts) permet de conclure, il est difficile de comprendre tes interventions ultérieures.

    En tout cas, cet exercice est une application classique des théorèmes sur limites et continuité Où l'on utilise le fait que [0,A] est un compact sans le dire

    Cordialement.
    oui, j'admet tout cela, et j'ai même dit avoir été trop court.
    c'est l'utilisation formelle des compacts qui a suivie que je pensais inutile.
    ps: rien à dire sur ta démo plus haut.
    cordialement.

  25. #55
    invite51d17075
    Animateur Mathématiques

    Re : un maximum global

    pour répondre à MiPaMa, un prolongement par continuité n'est pas une continuité.
    en tout cas pas en prépa.
    avec toutes les réserves ( antériorité )

  26. #56
    invite47ecce17

    Re : un maximum global

    Citation Envoyé par minushabens Voir le message
    Simple curiosité : comment est-ce qu'on démontre en prépa ce théorème : l'image continue d'un intervalle fermé borné est un intervalle fermé borné ? Est-ce qu'on utilise sans le dire une des caractérisations des parties compactes? (toute suite a un point d'accumulation)
    Oui, on utilise Bolzano Weierstrass.

    Citation Envoyé par ansset Voir le message
    pour répondre à MiPaMa, un prolongement par continuité n'est pas une continuité.
    en tout cas pas en prépa.
    Si. C'en est meme la défintion en fait... Voir par exemple ici, définition 4.3

  27. #57
    invite51d17075
    Animateur Mathématiques

    Re : un maximum global

    Citation Envoyé par MiPaMa Voir le message
    Si. C'en est meme la défintion en fait... Voir par exemple ici, définition 4.3
    désolé, suis un vieux moi

  28. #58
    gg0
    Animateur Mathématiques

    Re : un maximum global

    Heu ...MiPaMa,

    tu tires un peu trop sur la ficelle ! la définition 4.1 dit bien que si f n'est pas définie en a, f n'est pas continue en a. Et 4.3 définit le prolongement par continuité comme une nouvelle fonction (justement, pas notée f).

    Par contre, il est vrai que remplacer f par un prolongement permet de faire des preuves élégantes sur f. Par exemple montrer qu'elle est bornée et atteint ses bornes (dans certains cas).

    Cordialement.

  29. #59
    invite47ecce17

    Re : un maximum global

    Citation Envoyé par gg0 Voir le message
    la définition 4.1 dit bien que si f n'est pas définie en a, f n'est pas continue en a. Et 4.3 définit le prolongement par continuité comme une nouvelle fonction (justement, pas notée f).
    Ben... evidement.
    D'ailleurs dans ma première preuve j'ai noté le prolongement differement de la fonction... Je vois pas bien le rapport avec ce que dit Ansset ou ce que je dis.
    En meme temps, en relisant son message je me dis que je l'ai peut etre compris de travers, j'ai cru qu'il voulait dire "un prolongement par continuité n'est pas (necessairement) continu". Peut etre voulait il dire "dire que f est prolongeable par continuité ne veut pas dire qu'elle etait continue au point où on l'a prolonge", ce qui est bien sur vrai, vu qu'elle n'y est meme pas définie.

    Bref, tout ceci est tellement trivial je vois pas vraiment pourquoi on passe 4 pages la dessus.

  30. #60
    gg0
    Animateur Mathématiques

    Re : un maximum global

    Effectivement. Mais c'est justement parce qu'on ne se comprend pas !

    Cordialement.

Page 2 sur 3 PremièrePremière 2 DernièreDernière

Discussions similaires

  1. maximun global
    Par invite371ae0af dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 28/12/2011, 18h09
  2. extremum global
    Par invite0fd5e1c6 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 01/06/2011, 23h47
  3. Régional ou global ?
    Par invite8915d466 dans le forum Environnement, développement durable et écologie
    Réponses: 22
    Dernier message: 01/02/2010, 22h13
  4. global Id's IPv6
    Par invite0a921aca dans le forum Internet - Réseau - Sécurité générale
    Réponses: 6
    Dernier message: 22/01/2010, 15h40
  5. estimation du maximum de vraisemblance (Maximum Likelihood)
    Par Bartolomeo dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 02/06/2009, 14h47