Transformée de Laplace
Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

Transformée de Laplace



  1. #1
    invite07652111

    Transformée de Laplace


    ------

    Bonjour,

    J'ai besoin de conseils afin de résoudre une équation différentielle.
    J'ai un modèle qui réagit suivant cette équation :
    Nom : eq.JPG
Affichages : 54
Taille : 12,9 Ko
    I, c, k, C1 et C2 sont des coefficients.
    r est l'output (domaine temporel).
    Delta est l'input (domaine temporel).

    Actuellement, j'ai la solution mais seulement pour une entrée de type saut indicielle. Mon but est de pouvoir y appliquer une entrée quelconque (ex: avoir une fonction de transfert et y appliquer l'entrée désirée). J'aimerais savoir comment résoudre cette équation via la transformée de Laplace (avec l'aide de Matlab si nécessaire ). J'ai quelques bases concernant les transformées de Laplace mais, pas suffisamment que pour résoudre une telle équation.
    Vos conseils me seraient très utiles.

    Merci et bonne journée.

    -----

  2. #2
    stefjm

    Re : Transformée de Laplace

    Bonjour,
    Une dérivée temporelle correspond à une multiplication par p dans le domaine transformée (condition initiale nulle).
    D'où la fonction de transfert.
    Cordialement.
    Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».

  3. #3
    invite07652111

    Re : Transformée de Laplace

    Merci pour la réponse.

    Donc si r(0)= et delta(0)=0, alors, la fonction de transfert est:
    S(s)/E(s) = (C1*s + C2) / (I*s² - c*s + k)

    Est-ce bien correcte ?

  4. #4
    CM63

    Re : Transformée de Laplace

    Bonjour,

    Ben oui, ça me paraît simple, la fonction de transfert est une fraction rationnelle en p, et alors? Où est la difficulté? Oups je regarde ton message

    A plus

  5. A voir en vidéo sur Futura
  6. #5
    CM63

    Re : Transformée de Laplace

    Bonkour,

    Citation Envoyé par Zagstars Voir le message
    Merci pour la réponse.

    Donc si r(0)= et delta(0)=0, alors, la fonction de transfert est:
    S(s)/E(s) = (C1*s + C2) / (I*s² - c*s + k)

    Est-ce bien correcte ?
    Oui ça me paraît bon.

Discussions similaires

  1. Transformée de LaPlace
    Par invitebfa8e5a4 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 28/03/2015, 15h22
  2. Transformée de Laplace
    Par mc222 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 19/12/2010, 21h37
  3. Curiosité : lien entre transformée de Laplace et la transformée en Z
    Par erff dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 18/09/2008, 01h42
  4. [Laplace] Transformée de Laplace pour quel genre de signaux
    Par inviteb6983299 dans le forum Physique
    Réponses: 6
    Dernier message: 07/08/2007, 17h44
  5. transformée de laplace
    Par invitefc9b0afb dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 07/01/2006, 23h52