Répondre à la discussion
Affichage des résultats 1 à 9 sur 9

Un calcul en complexe, avec des sinus



  1. #1
    GuYem

    Un calcul en complexe, avec des sinus


    ------

    Bonjour à tous.

    Lors de la démonstration du fait que sin est une surjection de C dans C, on peut utiliser l'équivalence suivante :



    Quelqu'un peut-il m'aider à l'établir ?

    -----
    Bravo jolie Ln, tu as trouvé : l'armée de l'air c'est là où on peut te tenir par la main.

  2. Publicité
  3. #2
    matthias

    Re : Un calcul en complexe, avec des sinus

    Ca a pas l'air de marcher bien fort pour z=Z=0.
    En utilisant la formule d'Euler pour le sinus, ça donne quelque chose qui ressemble un peu.

  4. #3
    GuYem

    Re : Un calcul en complexe, avec des sinus

    Ah oui t'as raison ça marche pas fort pour z=Z=0 ...
    Je vais aller vérifier ça.

    En effet avec la formule d'Euler on s'en rappoche mais je n'arrive pas à faire sortir de exp(2z).

    La suite bientôt
    Bravo jolie Ln, tu as trouvé : l'armée de l'air c'est là où on peut te tenir par la main.

  5. #4
    rvz

    Re : Un calcul en complexe, avec des sinus

    Salut,

    Il me semble que si tu passes en z = a+ib, tu obtiens quelque chose du type

    Donc la partie réélle de sin(z) est

    Et la partie imaginaire vaut :


    Maintenant, ça, je suis sûr qu'on peut le résoudre. Soit Z=z1 +z2.
    Alors tu cherches a et b tel que
    a = Arcsin(z1/(ch(b)+2sh(b)) = Arccos(-z2/sh(b))
    Du coup, tu dois avoir que
    z1 = f2(b) := (ch(b)+2sh(b)) sin(Arccos(-z2/sh(b))

    Y a plus qu'à montrer que f2 a pour image tout R.

    Bon, d'accord, c'est assez laid, mais si on prend bien le temps da faire gaffe avec les Arccos, Arcsin et compagnie, ça devrait marcher...

    __
    rvz

  6. A voir en vidéo sur Futura
  7. #5
    GuYem

    Re : Un calcul en complexe, avec des sinus

    Je suis d'accord avec toi que ça doit marcher rvz ! Les expressions des parties réelles et imaginaires de sin(z) sont d'ailleurs données un peu plus tôt dans le bouquin. Ta partie réelle doit se simplifier encore un peu au passage.

    Cependant le but ici est de démontrer la surjectivité de sin à partir de celle de l'exponentielle vue un peu plus tôt, donc l'artillerie que tu sors me semble mal venue

    Après vérification le bouquin (Pommellet, analyse pour l'agrégation) affirme bien l'identité que j'ai énoncée. Surement une coquille, ou alors elle ne tient pas compte de la solution z=Z=0.

    Bref, cela ne me dit toujours pas comment sortir, à partir de sin z = Z une expression polynomiale en exp(z) qui me permettra de conclure quant à la surjectivité du sinus complexe ...
    Bravo jolie Ln, tu as trouvé : l'armée de l'air c'est là où on peut te tenir par la main.

  8. #6
    matthias

    Re : Un calcul en complexe, avec des sinus

    Citation Envoyé par GuYem
    Bref, cela ne me dit toujours pas comment sortir, à partir de sin z = Z une expression polynomiale en exp(z) qui me permettra de conclure quant à la surjectivité du sinus complexe ...
    Avec la forumle d'Euler ça marche bien. L'équation obtenue n'est pas la même mais ce n'est pas grave. z -> e^(iz) est aussi surjective de C dans C*. Comme 0 n'est pas solution de ton équation ...

  9. Publicité
  10. #7
    GuYem

    Re : Un calcul en complexe, avec des sinus

    Oui bien sur, cela donne

    exp(2iz) - 2iZexp(iz) - 1 = 0 et roule ma poule.

    Mais comment il a fait pour sortir cette équation ce brave Pommellet ?!??

    Merci à vous.
    Bravo jolie Ln, tu as trouvé : l'armée de l'air c'est là où on peut te tenir par la main.

  11. #8
    matthias

    Re : Un calcul en complexe, avec des sinus

    Citation Envoyé par GuYem
    Mais comment il a fait pour sortir cette équation ce brave Pommellet ?!??
    Tu es sûr qu'il n'y avait pas une bidouille du genre (plus une erreur de signe) ? C'est vrai que c'est louche.

  12. #9
    GuYem

    Re : Un calcul en complexe, avec des sinus

    Rien vu de ce genre là. Mais c'est vrai que Z/i et un signe à changer et tout rentre dans l'ordre...

    Oui c'est louche mais pas tant que ça, de toute façon dans ce bouquin les preuves sont le plus souvent "laissées au lecteur". Si ça se trouve il met des grosses coquilles exprès pour développer l'esprit critique dudit lecteur !
    Bravo jolie Ln, tu as trouvé : l'armée de l'air c'est là où on peut te tenir par la main.

Discussions similaires

  1. calcul somme de sinus
    Par mattveil dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 01/10/2007, 11h32
  2. petit calcul de probabilité avec des dés
    Par nysaken dans le forum Science ludique : la science en s'amusant
    Réponses: 5
    Dernier message: 06/07/2007, 15h34
  3. Fonction sinus dans le champ complexe
    Par le fouineur dans le forum Mathématiques du supérieur
    Réponses: 15
    Dernier message: 22/05/2006, 19h50
  4. limite avec des sinus
    Par "flo" dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 31/01/2006, 17h35