Bonjour j'ai un lemme dont je comprends pas la démonstration:
Lemme: Let K be a convex closed subset of X (Banach reel reflexif)with nonempty interior. If K \cap D(L) \neq 0,
then K= \overline{K \cap D(L)}.
Preuve: From the relation (int K) \cap D(L) \subset K \cap D(L), we get
\overline {(int K) \cap D(L) }\subset \overline {K \cap D(L)}.
Since in K is open, we also have
(int K) n \overline {D(L)} \subset \overline {(int K) \cap D(L)}.
Hence, D(L) being dense in X, we get int K G \overline {K \cap D(L)}, from which we derive the result by
using the fact that for a closed convex set with nonempty interior, K = \overline {int K}.
-----