Primitive d'une fonction trigo
Répondre à la discussion
Affichage des résultats 1 à 18 sur 18

Primitive d'une fonction trigo



  1. #1
    ceddesm

    Primitive d'une fonction trigo


    ------

    Bonjour,

    Dans le cadre d'une resolution d'équation de Bessel, je me retrouve à devoir intégrer sur "y" la function f(y)=cos(-x.sin(y)). Et là, je coince...
    Quelqu'un aurait-il une idée lumineuse SVP ?

    Qu'il/elle en soit remercié(e)

    -----

  2. #2
    invite51d17075
    Animateur Mathématiques

    Re : Primitive d'une fonction trigo

    bjr,
    je ne vois pas de solution analytique générale
    mais on peut faire qcq chose si |x| <1

  3. #3
    ceddesm

    Re : Primitive d'une fonction trigo

    Bonsoir,

    Merci quand même pour cette contribution. Mon souci est que ma question s'inscrit dans une problèmatique physique, où x (en valeur absolue) n'a aucune raison d'être <1. Si vous avez une fonction polynomiale approchant la primitive, je suis preneur aussi !

    Merci et bon WE

  4. #4
    gg0
    Animateur Mathématiques

    Re : Primitive d'une fonction trigo

    Bonjour.

    Une fonction polynomiale n'est peut être pas une bonne idée, surtout si y varie beaucoup. Par exemple la courbe pour x=2 ressemble assez à celle de y/4,5+sin(2y)/4. Attention, pour x=3 ça devient une courbe "descendante " !

    Cordialement.

  5. A voir en vidéo sur Futura
  6. #5
    invite51d17075
    Animateur Mathématiques

    Re : Primitive d'une fonction trigo

    Au cas ou , tu dois intégrer entres quelles valeurs de y ?

  7. #6
    ceddesm

    Re : Primitive d'une fonction trigo

    Je vais effectivement intégrer la f onction sur "y", et "y", et ce entre 0 et Pi. Mon but est de me retrouver avec une fonction de x. Je connais donc les bornes de l'intégrale, mais cela va-t-il faire avancer le schmilblick ?

  8. #7
    invite51d17075
    Animateur Mathématiques

    Re : Primitive d'une fonction trigo

    re-
    je me demande comment tu arrives à cette intégrale improbable.
    tu disais partir d'un problème physique à résoudre.
    bonne piste mathématique ?
    Cdt

  9. #8
    invite51d17075
    Animateur Mathématiques

    Re : Primitive d'une fonction trigo

    On peut imaginer un truc mais un peu lourdingue.
    On sait que :
    ( J fct de bessel du premier ordre ) et
    ( H fct de struve du premier ordre )

    si on écrit x=E(x)+e=n+e ( avec e <1 )
    on intègre ( je supprime le - inutile )


    les termes en esin(x) peuvent être approchés par des DL.
    c'est lourd et pas beau mais j'ai pas mieux.

  10. #9
    ceddesm

    Re : Primitive d'une fonction trigo

    Re...

    Merci d'avoir pris la peine de m'écrire tout ça. Je suis bien dans une problématique de fonctions de Bessel du premier ordre, qui découlent d'un problème de physique dans un espace tri-dimensionnel après avoir posé les conditions aux limites. Si ça t'intéresse de savoir comment j'en suis arrivé à ma fonction trigonométrique, je peux t'expliquer. Le souhaites-tu ?

    En tous cas merci pour ton aide jusque-là et d'ici-là, bon dimanche !

  11. #10
    invite51d17075
    Animateur Mathématiques

    Re : Primitive d'une fonction trigo

    re-
    en fait, il me semble que tous participants qui ont lu ta question se demandent bien d'où elle peut venir au départ.
    donc plus d'infos sur l'énoncé de l'exercice permettrait peut être d'y voir plus clair.
    Cdt

  12. #11
    ceddesm

    Re : Primitive d'une fonction trigo

    Ami du jour, bonjour !

    Je donnerai donc la Genèse de cette primitive. Je cherchais au départ à ne pas soûler mes lecteurs avec plus d'informations qu'il n'en faudrait et la restreindre donc au strict nécessaire, d'où le caractère limité dans les détails de mon post. Je reviendrai en fin de semaine avec plus d'info.

    Bon dimanche !

  13. #12
    azizovsky

    Re : Primitive d'une fonction trigo

    Bonjour, ta fonction est :
    voir: https://fr.wikipedia.org/wiki/Fonction_de_Bessel

  14. #13
    azizovsky

    Re : Primitive d'une fonction trigo

    et :

  15. #14
    ceddesm

    Re : Primitive d'une fonction trigo

    Bonsoir,

    Oui, c'est bien une fonction de Bessel que je recherchais, mais je bloquais sur l'intégrale...

    Dans la solution que tu donnes (merci !!!), dois-je remplacer k par p, ou inversement ? Cette série converge-t-elle quelque soit x ?

    En tous cas, cette forme-là me plait beaucoup plus que la fonction trigonométrique !

    Merci à toi et à bientôt

  16. #15
    azizovsky

    Re : Primitive d'une fonction trigo

    Bonjour, désolé , c'est , oui , elle est convergente car qui tend vers 0 quand p tend vers l'infini.

  17. #16
    ceddesm

    Re : Primitive d'une fonction trigo

    Bonsoir,

    Voilà qui me rassure, merci !
    Maintenant, je peux donc procéder au calcul de cette série, ce qui me convient beaucoup mieux que l'intégrale.
    Au fait, la solution que tu donnes, vient-elle d'uune source reconnue ou est-ce toi qui l'a calculée. Je te fais parfaitement confiance, mais si on me demande d'où je tire la solution avec les p!, c'est pour avoir une idée de l'origine de la solution .

    En tous cas, 1000 merci (et bravo !) pour cette prouesse mathématique, qui me rend un grand service !

    Très bonne soirée à toi.

  18. #17
    azizovsky

    Re : Primitive d'une fonction trigo

    Bonsoir, je n'ai rein fait, une simple 'observation', dans le lien https://fr.wikipedia.org/wiki/Fonction_de_Bessel, appuyer sur afficher (à droite de Démonstration) , tu trouve l'expression de la fonction de Bessel sous forme intégrale, pour n=0 , la formule donne l'intégrale que tu veut calculer (calcul machinale ), bonne continuation (n'oublie pas le café pour une bonne soirée ) .
    Dernière modification par azizovsky ; 23/01/2017 à 21h08.

  19. #18
    ceddesm

    Re : Primitive d'une fonction trigo

    Bonsoir,

    Dommage, je n'aime pas le café, mais je prendrai du coca à haute dose de caféine à la place .

    En tous cas, tu m'as enlevé sur immense épine du pied et je vais pouvoir advancer dans mon petit projet de R&D.

    Un grand merci encore !!!

    Bien à toi

Discussions similaires

  1. fonction trigo
    Par invite90c59b05 dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 12/10/2010, 17h06
  2. Primitive d'une fonction trigo
    Par invitec4eb90fd dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 09/03/2009, 14h48
  3. fonction trigo
    Par invite4f0ff87e dans le forum Mathématiques du collège et du lycée
    Réponses: 13
    Dernier message: 11/11/2007, 16h48
  4. Primitive d'une fonction trigo
    Par invitea7fcfc37 dans le forum Mathématiques du collège et du lycée
    Réponses: 13
    Dernier message: 09/07/2006, 18h21
  5. Primitive d'une fonction trigo
    Par invite50525975 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 16/11/2003, 00h57