polynome de Legendre
Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

polynome de Legendre



  1. #1
    ordage

    polynome de Legendre


    ------

    Bonjour
    Dans mathematica,

    http://mathworld.wolfram.com/Complet...FirstKind.html

    equation (4), on fait référence à un polynôme de Legendre du type P -1/2 (x) autrement dit P n (x) où n = - 1/2.
    Dans la définition de ces polynômes, je ne vois que des valeurs entières positives pour n.
    Est-ce une incompréhension de ma part où une erreur?

    Merci pour votre aide.

    Cordialement

    -----

  2. #2
    invite51d17075
    Animateur Mathématiques

    Re : polynome de Legendre

    Citation Envoyé par ordage Voir le message
    equation (4), on fait référence à un polynôme de Legendre du type P -1/2 (x) autrement dit P n (x) où n = - 1/2.
    Dans la définition de ces polynômes, je ne vois que des valeurs entières positives pour n.
    bjr,
    non dans les polynômes de Legendre , n n'est pas forcement entier.
    les cas particuliers n entiers entraînent simplement que ces polynômes ne sont définis qu'entre -1 et 1

  3. #3
    invite51d17075
    Animateur Mathématiques

    Re : polynome de Legendre

    pardon, je pense avoir dit une bétise ( mémoire défaillante ! )

  4. #4
    Resartus

    Re : polynome de Legendre

    Bonjour,
    Le mot "polynome" est abusif, mais les fonctions de legendre de première espèce peuvent être définies comme solution de l'équation de legendre, avec un ordre nul.

    cf : https://fr.wikipedia.org/wiki/Fonction_de_Legendre

    Quand le degré est entier, cela donne les polynomes
    Dernière modification par Resartus ; 13/09/2017 à 11h17.
    Why, sometimes I've believed as many as six impossible things before breakfast

  5. A voir en vidéo sur Futura
  6. #5
    ordage

    Re : polynome de Legendre

    Citation Envoyé par Resartus Voir le message
    Bonjour,
    Le mot "polynome" est abusif, mais les fonctions de legendre de première espèce peuvent être définies comme solution de l'équation de legendre, avec un ordre nul.

    cf : https://fr.wikipedia.org/wiki/Fonction_de_Legendre

    Quand le degré est entier, cela donne les polynomes
    Merci pour vos réponses. En reprenant les notations de mathematica, en fait j'ai besoin de calculer le produit de 1/sqrt(1-k²) par une intégrale elliptique complète de première espèce Elliptic_K(sqrt(k²/k²-1)), où k² est un nombre imaginaire (k² = i.x où x est réel), le résultat devant (du moins je voudrai le montrer) être réel.

    Il se trouve que l'équation (4) correspond exactement à ce cas. Pour cela je dois avoir la valeur numérique de P -1/2 , z où z est un nombre imaginaire pur (i.x). Je n'ai pas trouvé cela dans mathematica.
    IL semble également qu'il y ait une confusion entre polynômes de Legendre et fonction de Legendre comme tu l'indiques. J'ai regardé à fonction de Legendre, je n'ai pas trouvé grand chose d'exploitable.
    Merci encore

    Cordialement

Discussions similaires

  1. Polynome de Legendre
    Par invite616a69c2 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 09/11/2010, 21h17
  2. Polynôme de Legendre
    Par invite10090b76 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 31/05/2010, 21h20
  3. Polynôme de Legendre
    Par invite5e33344a dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 23/01/2010, 16h04
  4. Problème polynome de Legendre
    Par invitec1855b44 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 10/05/2009, 16h36