Répondre à la discussion
Affichage des résultats 1 à 17 sur 17

Physique statistique et entropie



  1. #1
    julien_4230

    Physique statistique et entropie


    ------

    Bonjour.

    On a vu une approche statistique de la thermodynamique, précisément de l'entropie.

    On a donc un système comme celui correspond à la détente de Joules-Gay Lussac. On a N atomes au total.

    On a donc un volume Va d'un côté et Vb de l'autre.

    La probabilité pa qu'un atome se trouve, lorsque l'quilibre est atteint, dans la case de volume va est pa = va/(vb+va). De même : pb = vb/(vb+va).

    La probabilité P(n) que n atomes se trouvent dans la case de volume va est : P(n) = panpbN-n(n parmi N).

    Ma question : pourquoi la valeur moyenne <n> vérifie :
    <n> = (somme de n=0 à N)nP(n) ????
    Que repérsente-t-elle concrêtement ?

    Une autre question :

    que vaut <n²> en ce sens ?
    <n²> = (somme de n=0 à N)n²P(n²) ?
    ou
    <n²> = (somme de n=0 à N)(nP(n))² ? C'est utile que calculer l'écart type s où s² = <n> - <n²>.

    Merci de m'aider !

    -----

  2. Publicité
  3. #2
    Coincoin

    Re : Physique statistique et entropie

    Salut,
    Ma question : pourquoi la valeur moyenne <n> vérifie :
    <n> = (somme de n=0 à N)nP(n) ????
    C'est la définition de la valeur moyenne : tu sommes la grandeur sur tous les évènements en pondérant par la probabilité : .

    Si tu veux la moyenne, tu obtiens donc . Si tu veux la moyenne quadratique, ce sera :
    Encore une victoire de Canard !

  4. #3
    julien_4230

    Re : Physique statistique et entropie

    Que représente concrêtement <n> ?

    Merci !

  5. #4
    Coincoin

    Re : Physique statistique et entropie

    C'est la moyenne, au sens intuitif, du nombre de particules...

    Comprends-tu les formules que j'ai mises ?
    Encore une victoire de Canard !

  6. A voir en vidéo sur Futura
  7. #5
    julien_4230

    Re : Physique statistique et entropie

    Bah non je ne comprends pas :
    <n> = (somme de n=0 à N)nP(n) justement...

  8. #6
    Coincoin

    Re : Physique statistique et entropie

    Sais-tu ce qu'est une "espérance mathématique" ?
    Encore une victoire de Canard !

  9. Publicité
  10. #7
    julien_4230

    Re : Physique statistique et entropie

    Humm... Ca représente l'espérance... Oui, ça fait longtemps que je n'ai pas entendu parlé de ça.

    Je vois, je vois... Voila juste le truc que j'ai du mal à comprendre : selon Gauss, P(n) est maximale pour n = <n>.
    POURQUOI ????? Merci !

  11. #8
    julien_4230

    Re : Physique statistique et entropie

    S'il vous plaît, ce serait bien que l'on m'aide là-dessus ! Ca n'est pas long à expliquer, j'en suis sûr...

  12. #9
    Coincoin

    Re : Physique statistique et entropie

    Je vois, je vois... Voila juste le truc que j'ai du mal à comprendre : selon Gauss, P(n) est maximale pour n = <n>.
    POURQUOI ????? Merci !
    Ca, c'est juste une propriété de la gaussienne, qui est symétrique : le maximum est confondu avec la moyenne. Y a des distributions pour lesquels ce n'est pas vrai.
    Encore une victoire de Canard !

  13. #10
    julien_4230

    Re : Physique statistique et entropie

    Mais si c'est que théorique, alors il y a de schances comme quoi ça ne fonctionne pas dans la réalité !

    pourquoi faire ça, alors ?

  14. #11
    Coincoin

    Re : Physique statistique et entropie

    Comment ça ?
    Encore une victoire de Canard !

  15. #12
    julien_4230

    Re : Physique statistique et entropie

    Bah est-ce que tout ce que j'ai dit est vrai dans la réalité ? Y a-t-il des démonstrations pour prouver que P(n) est maximale pour n=<n> ?

  16. Publicité
  17. #13
    chwebij

    Re : Physique statistique et entropie

    je crois que ca s'appelle le theoreme de la limite centrale, ou la fonction de répartition gaussiène marche assez bien.
    en bref pour un ensemble comportant enormement de particules pour des processus aléatoires on a une loi en
    AH NON! au moment où la petite flûte allait répondre aux cordes. Vous êtes ODIEUX!!

  18. #14
    julien_4230

    Re : Physique statistique et entropie

    Ouah ! Tu pourrais m'en dire plus là-dessus s'il te plaît ?

  19. #15
    chwebij

    Re : Physique statistique et entropie

    je ne vais pas me lancer dans l'explication de ce théorme car je n'ai pas encore eu de cours sur ca
    ce que je peux te dire et me fais l'echo de coincoin
    lorsqu'on une fonction de distribution f(n) symetrique en un point et ayant son max en celui ci , il est clair que ce point est la valeur moyenne de n
    apres tout depend de ta fonction de distribution qui elle est completement liée a ton système d'étude.
    AH NON! au moment où la petite flûte allait répondre aux cordes. Vous êtes ODIEUX!!

  20. #16
    julien_4230

    Re : Physique statistique et entropie

    Il me semblerait que <n> soit la valeur moyenne de ne pour laquelle il y ait un équilibre thermodynamique le plus probable... Me trompé-je ?

  21. #17
    humanino

    Re : Physique statistique et entropie

    Salut
    Citation Envoyé par julien_4230 Voir le message
    Il me semblerait que <n> soit la valeur moyenne de ne pour laquelle il y ait un équilibre thermodynamique le plus probable... Me trompé-je ?
    Tu as bon, c'est a peu pres ca je crois

    prouver que P(n) est maximale pour n=<n>
    Strcitement parlant, c'est hautement triviale une gaussienne. La question n'est peut etre pas bien posee... La question est plutot de prouver que P(n) est pertinente. Comme on te l'a indique c'est le theoreme de la limite centrale.

    Bon je ne suis pas thermodynamicien. J'ai cru comprendre que si tu creuses vraiment les fondements de la meca stat, tu peux aller treeeees profond. La meilleure justification qu'on peut donner pragmatiquement c'est qu'elle marche ! Si tu veux voir le genre de choses impliquees dans ces considerations, tu peux aussi jeter un oeil sur le theoreme H.
    "Puisque toute ces choses nous depassent, feignons de les avoir organisees"

Discussions similaires

  1. Physique statistique à l'équilibre
    Par Mataka dans le forum Physique
    Réponses: 2
    Dernier message: 09/10/2007, 15h18
  2. Réponses: 3
    Dernier message: 09/07/2006, 00h32
  3. physique statistique et choc thermique
    Par gatsu dans le forum Physique
    Réponses: 0
    Dernier message: 12/11/2005, 19h33
  4. Physique statistique - Maxwell Boltzmann
    Par CaptainCoinCoin dans le forum Physique
    Réponses: 2
    Dernier message: 15/03/2005, 13h34
  5. Exercices de physique statistique
    Par le géant vert dans le forum Physique
    Réponses: 0
    Dernier message: 08/09/2004, 15h38