Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Pb d'intégration



  1. #1
    marieh

    Pb d'intégration


    ------

    Bonjour,

    Je suis dans un pb de physique et j'ai un petit problème : je n'arrive plus a intégrer la relation suivante :
    dR/dx = g(Rc^2 - R(x)^2) , g et Rc étant des constantes.
    Quelqu'un pourrait-il m'aider?

    Je vous remercie
    Marie

    -----

  2. Publicité
  3. #2
    Meumeul

    Re : Pb d'intégration

    SAlut,

    tu dois avoir une petite chance en separant les variables :
    dR/(Rc^2 * (1 - ( R(x)/Rc )^2 ) = g.dx

    et sur un domaine a determiner, tu dois pouvoir poser du R/Rc = cos(theta) ce qui laisse de 1/sin(theta) a integrer.... si t'as ca en tete, c'est gagne, au pire ca doit se trouver...

    Bon courage

    pour le 1/sin, regardes du cote des regles de Bioches (tu exprimes le sin en fonction de tan(theta/2) )

  4. #3
    marieh

    Re : Pb d'intégration

    Merci pour l'aide....mais dans le problème il n'y a pas de theta!!
    Dans la correction, ils intègre en ln mais je ne vois pas comment faire sachant que l'on a (pour simplifier) quelquechose en dR/( cste-R^2)

  5. #4
    kron

    Re : Pb d'intégration

    Tu peux peut-êtreessayer ça :

    F(x) = Rc est solution particulière de ton équation.
    On pose R = Rc + y et on cherche y, qui est une nouvelle fonction inconnue.
    après calcul (en développant les termes de ton equadiff) tu devrais obtenir une équation de la forme :
    y'/(y²) - K.(1/y) = K' K et K' étant des constantes
    Reste à poser z = 1/y, résoudre l'équadiff d'ordre 1 en z
    Retrouver y
    Retrouver R

    C'est la méthode générale pour résoudre des équdiff de la forme : y' = ay² + by + c (équation de Ricotti)

    Mais il y a surement plus simple...
    Life is music !

  6. A voir en vidéo sur Futura
  7. #5
    pirlo21

    Re : Pb d'intégration

    Citation Envoyé par marieh Voir le message
    Bonjour,

    Je suis dans un pb de physique et j'ai un petit problème : je n'arrive plus a intégrer la relation suivante :
    dR/dx = g(Rc^2 - R(x)^2) , g et Rc étant des constantes.
    Quelqu'un pourrait-il m'aider?

    Je vous remercie
    Marie
    dR/(R^2-Rc^2)=-gdx
    Remarquez bien que (R^2-Rc^2) = (R-Rc).(R+Rc)
    donc la decomposition de 1/(R^2-Rc^2)=A/(R-Rc) + B/(R+Rc)={(A+B).R + (A-B).Rc}/(R^2-Rc^2)
    par identification au numerateur:
    A+B=0 (*)
    et A-B=1/Rc (**)
    on somme membre par membre
    donc
    2.A=1/Rc c.a.d A=1/(2Rc)
    l'eqt (*) donne B=-A=-1(2Rc)
    donc
    [ln(R-Rc)-ln(R+Rc)]/(2Rc)=-gx+k une constante d'integration
    ce resultat impose que R-Rc>0 c.a.d R>Rc
    soit encore
    ln[(R-Rc)/(R+Rc)]=-2g.Rc.x + Cte (une autre constante)
    donc les conditions aux limites vous donneront la valeur de la Cte
    Ciao Ragazzi

  8. #6
    marieh

    Re : Pb d'intégration

    Merci....beaucoup pour votre aide

  9. Publicité
  10. #7
    pirlo21

    Re : Pb d'intégration

    Citation Envoyé par marieh Voir le message
    Merci....beaucoup pour votre aide
    Je vous en prie ma chere

Discussions similaires

  1. journée d'integration
    Par benji17 dans le forum Orientation après le BAC
    Réponses: 6
    Dernier message: 18/06/2007, 18h59
  2. Domaine d'intégration
    Par Adsederq dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 12/02/2007, 19h12
  3. Problème d'intégration
    Par Witten dans le forum Mathématiques du supérieur
    Réponses: 36
    Dernier message: 23/02/2006, 21h44
  4. Problème d'intégration
    Par Josquin dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 19/02/2005, 15h22