intégration curviligne
Répondre à la discussion
Affichage des résultats 1 à 23 sur 23

intégration curviligne



  1. #1
    invite71e3cdf2

    intégration curviligne


    ------

    salut,

    l'inertie d'un cylindre se calcule comme suit :





    puis dans mon bouquin, j'ai :



    là je vois pas comment il est passé à cette étape, vu que le volume du cylindre est :



    merci de m'éclairer

    -----

  2. #2
    invitedbd9bdc3

    Re : intégration curviligne

    Bonjour,

    l'element de volume dans les coordonnes cylindriques est .
    Si tu integre cela entre 0 et h pour z, 0 et 2pi pour et 0 et R pour r, tu retrouves bien ton volume.
    Mais ici, ton inegrale contient aussi un terme .
    Tu dois donc integrer
    .
    Tu peux directement integrer celon z, ce qui te donne simplement h, et tu retrouves bien ta derniere expression.

    Il faut toujours se souvenir que le volume d'une cylindre, sphere, cube, etc provient d'une integrale et n'est pas juste une formule

  3. #3
    Deedee81

    Re : intégration curviligne

    Salut,

    Citation Envoyé par Infra_Red Voir le message
    l'inertie d'un cylindre se calcule comme suit :





    puis dans mon bouquin, j'ai :



    là je vois pas comment il est passé à cette étape, vu que le volume du cylindre est :


    En coordonnées polaires, l'élément de surface du disque est . Suffit de multiplier par h pour avoir le volume.

    D'ailleurs, si tu intègres : tu trouves bien le volume que tu donnes (rdr donne r²/2 et dtheta donne 2pi, reste pir² et h est une constante, évidemment).

    EDIT : grillé par thwarn
    "Il ne suffit pas d'être persécuté pour être Galilée, encore faut-il avoir raison." (Gould)

  4. #4
    invite7ce6aa19

    Re : intégration curviligne

    Citation Envoyé par Infra_Red Voir le message
    salut,

    l'inertie d'un cylindre se calcule comme suit :




    .
    a partir de là il faut écrire "astucieusement" l'expression de dV en exploitant la symétrie cylindrique de ton problème.

  5. A voir en vidéo sur Futura
  6. #5
    obi76

    Re : intégration curviligne

    Tout simplement parce qu'en coordonnées cylindrique, un petit élément dV est égal à .

    EDIT : grillé 3 fois en 10s (le temps d'aller voir si je pouvais pas lui trouver une référence sur Wiki...)

  7. #6
    invite6dffde4c

    Re : intégration curviligne

    Bonjour.
    D'abord ce n'est pas du tout une intégrale curviligne. C'est une intégrale de volume.

    Quand vous faites une intégrale de volume, il faut diviser le volume sur lequel vous intégrez en petits volumes élémentaires qu'il faut pouvoir dessiner et je vous conseille très, très vivement de le faire.
    La condition est que la fonction à intégrer soit "constante" dans le volume élémentaire (aux variations différentielles près). Si vous ne pouvez pas dessiner ces volumes élémentaires, ce n'est pas la peine d'aller plus loin.

    Dans votre cas, la fonction à intégrer est r². Donc, la seul contrainte du volume élémentaire est qu'il soit "à r constant".

    Dessinez votre cylindre et, pour une valeur représentative de r (r différent de zéro et r différent de rmax) dessinez une volume infiniment petit "à r constant" (c'est à dire, que r peut varier entre r et r+dr).
    Écrivez la valeur du volume de ce différentiel de volume. (dv=...).
    Vous verrez que si vous êtes malin, dans ce cas particulier, vous n'aurez pas à faire d'intégrale triple ou double. Avec une intégrale simple cela suffit.
    Au revoir.

  8. #7
    invitedbd9bdc3

    Re : intégration curviligne

    J'ai ete le plus rapide, mais ca c'est joue de peu

    futura est un univers tres concurrentiel

  9. #8
    invite01087e88

    Re : intégration curviligne

    Salut,

    Je pense que ce qui est piège dans l'écriture, c'est que du coup on n'intègre plus sur V mais sur la section S du cylindre (on a déjà intégré selon la hauteur)...

    A+

    Ravjul

  10. #9
    invite71e3cdf2

    Re : intégration curviligne

    dis donc on se bouscule pour me répondre.
    j'ai pas le temps là, je relirais vos réponses plus tard.
    en gros faut exprimer le volume en utilisation les coordonnées polaires.

  11. #10
    obi76

    Re : intégration curviligne

    pas polaires, cylindriques

  12. #11
    invitedbd9bdc3

    Re : intégration curviligne

    Citation Envoyé par obi76 Voir le message
    pas polaires, cylindriques
    Ca depend si c'est avant ou apres l'integration sur z

  13. #12
    invite01087e88

    Re : intégration curviligne

    Ca depend si c'est avant ou apres l'integration sur z
    Ben voyons...
    z étant en radians, c'est ça

    A+

    RAvjul

  14. #13
    invite7ce6aa19

    Re : intégration curviligne

    Citation Envoyé par Infra_Red Voir le message
    dis donc on se bouscule pour me répondre.
    j'ai pas le temps là, je relirais vos réponses plus tard.
    en gros faut exprimer le volume en utilisation les coordonnées polaires.
    .
    Je te conseillerais de suivre les indications de LPFR. Lis-les attentivement et fais un dessin.
    .
    Au préalable et dans le même esprit tu peux démontrer le volume de la sphère. Idée: découper la sphère en tranches. Pourquoi?

  15. #14
    invitedbd9bdc3

    Re : intégration curviligne

    Citation Envoyé par Ravjulbespar Voir le message
    Ben voyons...
    z étant en radians, c'est ça
    je ne comprends pas la remarque...

    si tu commence par ton integration sur z, il ne te reste ensuite qu'une integration en "2D" sur theta et r. Ce qui correspond a des coordonnees polaires. C'est "comme" si on avait reduit nos coordonnees cylindriques en coordonnees polaires.
    Et puis c'etait une remarque a prendre avec legerete

  16. #15
    invite01087e88

    Re : intégration curviligne

    Ca se voulait une boutade qui est tombée à plat : je n'insiste pas pour ne pas pourrir la discussion fort intéressante de Infra_Red...

    A+

    Ravjul

  17. #16
    obi76

    Re : intégration curviligne

    Citation Envoyé par Ravjulbespar Voir le message
    Ca se voulait une boutade qui est tombée à plat : je n'insiste pas pour ne pas pourrir la discussion fort intéressante de Infra_Red...
    Oui, j'ai bien dis cylindrique, pas sphérique...

  18. #17
    invite71e3cdf2

    Re : intégration curviligne

    Citation Envoyé par Thwarn Voir le message
    Bonjour,

    l'element de volume dans les coordonnes cylindriques est .
    Si tu integre cela entre 0 et h pour z, 0 et 2pi pour et 0 et R pour r, tu retrouves bien ton volume.
    Mais ici, ton inegrale contient aussi un terme .
    Tu dois donc integrer
    .
    Tu peux directement integrer celon z, ce qui te donne simplement h, et tu retrouves bien ta derniere expression.

    Il faut toujours se souvenir que le volume d'une cylindre, sphere, cube, etc provient d'une integrale et n'est pas juste une formule
    oui ca j'ai tout compris, mais :


    d'où il sort le r de rdr ?

  19. #18
    invite01087e88

    Re : intégration curviligne

    d'où il sort le r de rdr
    Je dirai bien qu'il arrive de :

    ce qui nous arrange bien parce que quand on intègre tout cela, cela nous redonne le volume du cylindre !
    Mais pour être très franc, j'essaie de le redémontrer proprement depuis le milieu de l'après midi sans succès...
    Comme quoi, dix ans plus tard, ce qu'il reste de ce qu'on ne pratique pas...

    Je cherche encore un peu, mais si quelqu'un peut remettre le calcul d'ici ce WE, cela m'évitera de fouiller dans la poussière de mes notes de cours !

    A+

    Ravjul

  20. #19
    invite93279690

    Re : intégration curviligne

    Citation Envoyé par Infra_Red Voir le message
    oui ca j'ai tout compris, mais :


    d'où il sort le r de rdr ?
    ça dépend comment tu calcules ton élément de volume .
    Une manière de voir est celle proposée par Ravjulbespar (mais ce raisonnement ne marche pas à tous les coups il me semble) une autre assez intuitive est de dire que le volume c'est dV=(variation de longueur selon r)x(variation de longueur selon theta)x(variation de longueur selon z)
    soit dans notre cas
    le dans ce cas là vient juste du fait que la longueur d'un arc de cercle de rayon et d'angle est

  21. #20
    invite01087e88

    Re : intégration curviligne

    Ouf ça y est ; Google vient de me remettre sur la voie...

    Le volume élémentaire dV est assimilé à un pavé de volume dV = dx.dy.dz avec :
    - , arête radiale,
    - , arête orthoradiale égale à l'arc d'angle dtheta et de rayon r
    - (!)

    donc on a bien :


    C'est rouillé, mais rouillé tout ça...

    A+

    Ravjul

  22. #21
    invite9c9b9968

    Re : intégration curviligne

    Bonsoir,

    Cf le message très très pédagogique de LPFR

    Bon c'est dur sans dessin...

    Mais le truc c'est de calculer le volume élémentaire en coordonnées cylindriques.

    Il faut imaginer un cylindre de hauteur dz et de rayon r ; tu en prend une tranche selon l'angle du disque de base. Maintenant tu dessine un second cylindre de hauteur dz et de rayon r+dr, avec le disque de base concentrique du disque de base du premier, et tu prend la même tranche angulaire.

    Ton volume élémentaire est le volume compris entre la tranche de rayon r et la tranche de rayon dr.

    C'est un petit parallélépipède au 1er ordre, dont les côtés sont de mesure dz, dr et :

    Nom : truc.jpg
Affichages : 58
Taille : 4,1 Ko

    Je l'ai représenté dans un plan orthogonal à dz.

    Du coup, ton volume élémentaire sera bien

    EDIT : ok cool le temps que je fasse mon petit dessin et je me fais griller

  23. #22
    invite71e3cdf2

    Re : intégration curviligne

    ok ca m'aide mieux.
    dur dur d'apprendre seul, ca m'apprendra à pas écouter les cours.

  24. #23
    invitedbd9bdc3

    Re : intégration curviligne

    Citation Envoyé par Infra_Red Voir le message
    oui ca j'ai tout compris, mais :


    d'où il sort le r de rdr ?
    Il y a la façon mathematique. On prend les coordonnees cartesiennes, on les transforme en polaires. Et on calcule le jacobien. Ca te donne le r.

    Il y a la façon heuristique. Fais un dessin. Commence par une droite de longueur r, horientée par rapport a l'horizontale d'un angle .
    Fait tourner ta droite d'un angle . Tu obtiens une tranche de camembert (vue du dessus ).
    Maintenant, augmente tes deux droites (l'ancienne et la nouvelle, tournée de ) de dr. Tu obtiens une tranche de cambembert un peu plus grande.
    L'aire que tu as ajouté à ton ancienne tranche vaut .
    On comprend comme ça d'où vient le r du jacobien. Si r est plus petit, l'aire ajoutée est plus petite. Si r est plus grand, l'aire est plus grande.

    J'espere que mes explications sont suffisantes pour pouvoir dessiner...

Discussions similaires

  1. Intégrale curviligne
    Par invite6db91fef dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 06/12/2012, 16h33
  2. Intégration curviligne
    Par invitef0ea8fec dans le forum Physique
    Réponses: 7
    Dernier message: 25/06/2008, 19h22
  3. Intégrale curviligne
    Par invite14329c12 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 27/01/2008, 16h51
  4. integrale curviligne
    Par invite4e9186a9 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 02/08/2007, 18h48
  5. Intégrale curviligne
    Par invite3c81b085 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 30/12/2005, 12h38