Equations de maxwell - Page 2
Répondre à la discussion
Page 2 sur 2 PremièrePremière 2
Affichage des résultats 31 à 60 sur 60

Equations de maxwell



  1. #31
    invite0bbfd30c

    Re : equations de maxwell


    ------

    Citation Envoyé par Arcole
    La question est toujours ouverte: ces équations sont- elles posées à priori ou bien sont-elles déduisibles es lois en 1/r^2?
    Les équations de Maxwell peuvent s'obtenir à partir des lois donnant les champs en fonction de leurs sources [plus l'hypothèse de la conservation de la charge], et inversement les lois donnant les champs en fonction de leurs sources [ainsi que l'hypothèse de la conservation de la charge] peuvent s'obtenir en partant des équations de maxwell. Bref, elles sont équivalentes. Par conséquent on ne "démontre" pas les équations de Maxwell, du moins pas plus qu'on ne "démontre" les lois donnant les champs en fonction des sources, trouvées auparavant...

    -----

  2. #32
    invite21348749873
    Invité

    Re : equations de maxwell

    Citation Envoyé par Chip
    Les équations de Maxwell peuvent s'obtenir à partir des lois donnant les champs en fonction de leurs sources [plus l'hypothèse de la conservation de la charge], et inversement les lois donnant les champs en fonction de leurs sources [ainsi que l'hypothèse de la conservation de la charge] peuvent s'obtenir en partant des équations de maxwell. Bref, elles sont équivalentes. Par conséquent on ne "démontre" pas les équations de Maxwell, du moins pas plus qu'on ne "démontre" les lois donnant les champs en fonction des sources, trouvées auparavant...
    Dans les expressions de Rot E et Rot B ,apparaissent des termes en dB/dt et dE/dt.
    Comment ont-ils été déterminés?

  3. #33
    invite0bbfd30c

    Re : equations de maxwell

    Citation Envoyé par Arcole
    Dans les expressions de Rot E et Rot B ,apparaissent des termes en dB/dt et dE/dt. Comment ont-ils été déterminés?
    Pour rot E c'est la loi de l'induction (Faraday). Pour l'expression de rot B (ou de son équivalent de l'époque), le terme en dE/dt a été ajouté par Maxwell (le premier terme correspond au théorème d'Ampère) pour la rendre compatible avec certaines situations (bien vu! ).

  4. #34
    invite93279690

    Re : equations de maxwell

    Citation Envoyé par Chip
    Par conséquent on ne "démontre" pas les équations de Maxwell, du moins pas plus qu'on ne "démontre" les lois donnant les champs en fonction des sources, trouvées auparavant...
    Je ne suis pas d'accord, d'un point de vue plus fondamental les équations de Maxwell peuvent se démontrer via un principe variationnel en théorie des champs.

  5. #35
    invite21348749873
    Invité

    Re : equations de maxwell

    Ou puis je avoir plus de détails la dessus?

  6. #36
    invite0bbfd30c

    Re : equations de maxwell

    Citation Envoyé par gatsu
    Je ne suis pas d'accord, d'un point de vue plus fondamental les équations de Maxwell peuvent se démontrer via un principe variationnel en théorie des champs.
    Ah bon, je ne savais pas... (mais, encore une fois, il vaut sans doute mieux dire "dériver de" ou "obtenir à partir de" que "démontrer")

  7. #37
    invite93279690

    Re : equations de maxwell

    Citation Envoyé par Chip
    mais, encore une fois, il vaut sans doute mieux dire "dériver de" ou "obtenir à partir de" que "démontrer"
    Oui tu as raison .

  8. #38
    invite93279690

    Re : equations de maxwell

    Citation Envoyé par Arcole
    Ou puis je avoir plus de détails la dessus?
    On peut les trouver à cette adresse:
    http://www.lkb.ens.fr/cours/notes-de...relativite.pdf

  9. #39
    invite54979d3e

    Re : equations de maxwell

    Bon alors je vais t'expliquer si personne ne l'a déja fait, j'ai pas tout lu dsl je n'ai pas trop le temps.

    Alors la loi de Biot et savard est une loi qui a été établi par expérience

    Tu as 2 facon de prouver que div B = 0
    Je pense que le plus simple c'est par Biot et savard

    La démonstration n'est pas trés dure tu devrait la trouver tout seul !!!!!!


  10. #40
    invite21348749873
    Invité

    Re : equations de maxwell

    je ne vois pas comment démontrer cela.

  11. #41
    invite93279690

    Re : equations de maxwell

    Pour ceux qui ont eu la flemme de tout lire sur le lien que j'ai donné, la partie qui vous interresse se trouve page 57
    Si il y a le moindre probleme au niveau des notations ou des principes énoncés il suffit de le dire

  12. #42
    mtheory

    Re : equations de maxwell

    Citation Envoyé par gatsu
    Je ne suis pas d'accord, d'un point de vue plus fondamental les équations de Maxwell peuvent se démontrer via un principe variationnel en théorie des champs.

    Ce n'est pas une démonstration puisque tu es obligé d'avoir ta densité lagrangienne au départ et elle ne tombe pas du ciel.
    Bien sûr tu peux donner des arguments pour expliquer pourquoi elle doit en gros avoir la forme qu'elle a mais tout part de l'expérience et de la forme des lois différentielles/intégrales exprimant certains résultats expérimentaux de base.
    Il se trouve qu'après il est possible d'avoir un point de départ sous différentes formes pour redériver axiomatiquement ces équations mais il ne s'agit pas de démonstration.
    “I'm smart enough to know that I'm dumb.” Richard Feynman

  13. #43
    invite93279690

    Re : equations de maxwell

    Citation Envoyé par mtheory
    Ce n'est pas une démonstration puisque tu es obligé d'avoir ta densité lagrangienne au départ et elle ne tombe pas du ciel.
    Bien sûr tu peux donner des arguments pour expliquer pourquoi elle doit en gros avoir la forme qu'elle a mais tout part de l'expérience et de la forme des lois différentielles/intégrales exprimant certains résultats expérimentaux de base.
    Il se trouve qu'après il est possible d'avoir un point de départ sous différentes formes pour redériver axiomatiquement ces équations mais il ne s'agit pas de démonstration.
    Oui c'est pour ça que chip m'a repris et qu'il m'a dit qu'il vallait mieux dire "dérivation" que "démonstration" (cf plus haut).
    En outre une théorie nécéssite des postulats fondamentaux (tres souvent induits par l'experience je suis d'accord là dessus) qui permettent ensuite de dériver toutes les autres relations propres à cette théorie.
    De ce point de vue, rien ne m'empeche de considérer la forme des densités Lagrangiennes du champ EM comme des postulats de départ (que l'on voit de deux façons différentes: justifiés par l'experience ou à vérifier par l'experience).
    Si je me permets d'insister sur ces choses depuis le début de ce fil c'est que j'estime (peut etre à tord) que ces postulats sont "plus" fondamentaux que les seules équations de Maxwell ne serait ce que parce qu'ils permettent de retrouver l'expression de la force de Lorentz par exemple.

  14. #44
    invité576543
    Invité

    Re : equations de maxwell

    Citation Envoyé par gatsu
    Si je me permets d'insister sur ces choses depuis le début de ce fil c'est que j'estime (peut etre à tord) que ces postulats sont "plus" fondamentaux que les seules équations de Maxwell ne serait ce que parce qu'ils permettent de retrouver l'expression de la force de Lorentz par exemple.
    Bonjour,

    Les équations de Maxwell toutes seules ne sont pas équivalentes aux autres approches, c'est vrai, mais c'est dû à ce que E et B n'ont alors aucune signification autre que celle donnée par les équations. La manière de leur donner un sens opérationnel c'est d'ajouter l'équation qui exprime la force que subit une charge en fonction de E et B, et du coup l'expression de la force de Lorentz apparaît. Elle n'est pas dérivée, c'est un postulat caché derrière la signification de E et B, il me semble?

    Cordialement,

  15. #45
    mtheory

    Re : equations de maxwell

    Citation Envoyé par gatsu
    Si je me permets d'insister sur ces choses depuis le début de ce fil c'est que j'estime (peut etre à tord) que ces postulats sont "plus" fondamentaux que les seules équations de Maxwell ne serait ce que parce qu'ils permettent de retrouver l'expression de la force de Lorentz par exemple.
    Il est exact que dériver les équations de Maxwell à partir d'un Lagrangien est important pour les raisons que tu donnes.D'ailleurs ce n'est pas un hasard si dans le Landau-Lifshitz les lois sont dérivées d'un principe variationnel le plus souvent possible
    “I'm smart enough to know that I'm dumb.” Richard Feynman

  16. #46
    invite93279690

    Re : equations de maxwell

    Citation Envoyé par mmy
    Bonjour,

    Les équations de Maxwell toutes seules ne sont pas équivalentes aux autres approches, c'est vrai, mais c'est dû à ce que E et B n'ont alors aucune signification autre que celle donnée par les équations.
    Si on leur donne des dimensions physiques, les champs E et B via les équations de Maxwell seules peuvent tout de même etre reliés à une notion de densité d'energie et de flux d'energie.
    La manière de leur donner un sens opérationnel c'est d'ajouter l'équation qui exprime la force que subit une charge en fonction de E et B, et du coup l'expression de la force de Lorentz apparaît. Elle n'est pas dérivée, c'est un postulat caché derrière la signification de E et B, il me semble?

    Cordialement,
    Oui je pense aussi que la force de Lorentz est un postulat caché si on n'énonce que les équations de Maxwell et c'est d'ailleurs pour ça que je préfère (mais chacun fait ce qu'il veut ) le point de vue variationnel qui permet de dériver la force de Lorentz (à partir d'un lagrangien postulé aussi de toute façon).

  17. #47
    invite21348749873
    Invité

    Re : equations de maxwell

    les équations de Maxwell décrivent les phénomènes de façon "statistique", car des grandeurs comme la densité volumique de charge ou la densité de courant sont discontinues, et elles apparaissent continues dans les équations.
    Est ce une erreur de penser qu'elles ne sont peut etre que des outils de calcul, et non des énoncés irréductibles?

  18. #48
    invité576543
    Invité

    Re : equations de maxwell

    Citation Envoyé par Arcole
    les équations de Maxwell décrivent les phénomènes de façon "statistique", car des grandeurs comme la densité volumique de charge ou la densité de courant sont discontinues, et elles apparaissent continues dans les équations.
    Est ce une erreur de penser qu'elles ne sont peut etre que des outils de calcul, et non des énoncés irréductibles?
    C'est nécessairement le cas de toutes les formules de l'électromagnétisme, puisque 1/r² diverge en 0... L'approche correcte est connue, c'est la QED... Les équations de Maxwell ne sont qu'une approximation de la QED, me trompe-je?

    Cordialement,

  19. #49
    invite21348749873
    Invité

    Re : equations de maxwell

    Citation Envoyé par mmy
    C'est nécessairement le cas de toutes les formules de l'électromagnétisme, puisque 1/r² diverge en 0... L'approche correcte est connue, c'est la QED... Les équations de Maxwell ne sont qu'une approximation de la QED, me trompe-je?

    Cordialement,
    Je ne connais pas du tout cette approche; peux tu m'en dire un peu plus?

  20. #50
    invité576543
    Invité

    Re : equations de maxwell

    Citation Envoyé par Arcole
    Je ne connais pas du tout cette approche; peux tu m'en dire un peu plus?
    Euh... QED, Electro-Dynamique Quantique in French. C'est la version aboutie style méca Q de l'électrodynamique. Les charges sont vues comme les quanta de champs (champs d'électrons, ...), le champ électromagnétique est... un champ. Les échanges entre champs de charge et champs électromagnétique sont quantifiés... Une interaction est calculée comme une série infinie d'interactions possibles chacune décrite comme un nombre fini d'émissions et/ou absorptions de photons. Et on fait de jolis diagrammes de Feynman pour décrire les différents cas. La divergence en 1/r² n'existe pas, remplacée par d'autres divergences, résolues par un tour de passe-passe gentiment décrit comme une "renormalisation"...

    Au-delà de cette présentation caricaturale sans formule, faut aller consulter les manuels...

    Cordialement,

    EDIT: Si j'ai dis une connerie dans le tas, merci aux vrais physiciens de corriger!

  21. #51
    invitea29d1598

    Re : equations de maxwell

    Citation Envoyé par mmy
    Les équations de Maxwell ne sont qu'une approximation de la QED, me trompe-je?
    Maxwell est exactement la version non quantifiée de la QED.

    Plus précisément, si tu prends le lagrangien QED et le regarde en voyant des fonctions là où un physicien moderne voit des opérateurs, hop! tu obtiens Maxwell :S

  22. #52
    invite21348749873
    Invité

    Re : equations de maxwell

    Citation Envoyé par mmy
    Euh... QED, Electro-Dynamique Quantique in French. C'est la version aboutie style méca Q de l'électrodynamique. Les charges sont vues comme les quanta de champs (champs d'électrons, ...), le champ électromagnétique est... un champ. Les échanges entre champs de charge et champs électromagnétique sont quantifiés... Une interaction est calculée comme une série infinie d'interactions possibles chacune décrite comme un nombre fini d'émissions et/ou absorptions de photons. Et on fait de jolis diagrammes de Feynman pour décrire les différents cas. La divergence en 1/r² n'existe pas, remplacée par d'autres divergences, résolues par un tour de passe-passe gentiment décrit comme une "renormalisation"...

    Au-delà de cette présentation caricaturale sans formule, faut aller consulter les manuels...

    Cordialement,

    EDIT: Si j'ai dis une connerie dans le tas, merci aux vrais physiciens de corriger!
    Ah d'accord, electro dynamique quantique, ça ,ça me parle et j'ai meme lu quelques paragraphes sur le sujet.
    Je ne savais pas que ça s'appelait QED.
    Honnetement, cela m'a paru assez obscur .

  23. #53
    inviteeaeab49a

    Re : Equations de maxwell

    Bonjour,
    en parlant des equations de Maxwell, qlq'un peut me dire comment montrer que apartir de ces equations on peut trouver l'equation de schroodinger pour la lumière, car ça me travaille depuis le temps, j'ai réussi a trouver l'eq de schroodinger qui est (1/c2 d2/dt2-d2/dx2)psi=0 mais pour démontrer l'égalité reste un pb !!!
    y a t il qlq'un pour m'aider?

  24. #54
    mtheory

    Re : Equations de maxwell

    Citation Envoyé par nehoo
    Bonjour,
    en parlant des equations de Maxwell, qlq'un peut me dire comment montrer que apartir de ces equations on peut trouver l'equation de schroodinger pour la lumière, car ça me travaille depuis le temps, j'ai réussi a trouver l'eq de schroodinger qui est (1/c2 d2/dt2-d2/dx2)psi=0 mais pour démontrer l'égalité reste un pb !!!
    y a t il qlq'un pour m'aider?

    impossible
    “I'm smart enough to know that I'm dumb.” Richard Feynman

  25. #55
    inviteeaeab49a

    Re : Equations de maxwell

    bonne et heureuse année 2006!
    comment ça 'impossible' expliquez SVP!!!
    car je suis vraiment au bord de la déprime

  26. #56
    mtheory

    Re : Equations de maxwell

    Citation Envoyé par nehoo
    bonne et heureuse année 2006!
    comment ça 'impossible' expliquez SVP!!!
    car je suis vraiment au bord de la déprime
    Salut et bonnes année 2006
    Parce que l'équation de Schroëndinger est du premier ordre par rapport au temps et qu'elle s'applique à tous les systèmes physiques.
    On ne déduit pas l'équation de Schroëndinger des équations de Maxwell.
    “I'm smart enough to know that I'm dumb.” Richard Feynman

  27. #57
    BioBen

    Re : Equations de maxwell

    On ne déduit pas l'équation de Schroëndinger des équations de Maxwell
    Mais elle est retrouvabe à partir du PFD + petite oscillations + relation de De Broglie non ?

  28. #58
    mtheory

    Re : Equations de maxwell

    Citation Envoyé par BioBen
    Mais elle est retrouvabe à partir du PFD + petite oscillations + relation de De Broglie non ?
    Juste UNE équation de Schroëdinger , pas l'équation de Schroëndinger qui est plus générale.
    Et comme disait mon prof de maths c'est une 'monstration' pas une démonstration
    “I'm smart enough to know that I'm dumb.” Richard Feynman

  29. #59
    b@z66

    Re : equations de maxwell

    Citation Envoyé par m3thylen3
    Bon alors je vais t'expliquer si personne ne l'a déja fait, j'ai pas tout lu dsl je n'ai pas trop le temps.

    Alors la loi de Biot et savard est une loi qui a été établi par expérience

    Tu as 2 facon de prouver que div B = 0
    Je pense que le plus simple c'est par Biot et savard

    La démonstration n'est pas trés dure tu devrait la trouver tout seul !!!!!!

    Il est facile de trouver l'origine empirique de l'expression divB=0, il suffit de se rappeler de la fameuse expérience avec la limaille de fer(que tout le monde connait!!!) pour se rendre compte que les lignes de champs magnétiques sont toujours des lignes "fermées". C'est ce que traduit la conservation du flux magnétique, il me semble (si on admet que les champs à l'infini tendent vers 0).


  30. #60
    b@z66

    Re : equations de maxwell

    Citation Envoyé par Arcole
    C'est exact
    Toute ligne de champ magnétique est fermée et ne s'en va pas à l'infini.
    Désolé, j'avais pas vu ce post en survolant le sujet.


Page 2 sur 2 PremièrePremière 2

Discussions similaires

  1. Equations de Maxwell
    Par invite52f0ab57 dans le forum Physique
    Réponses: 12
    Dernier message: 26/06/2007, 16h47
  2. 4 ou 2 équations de Maxwell?
    Par b@z66 dans le forum Physique
    Réponses: 13
    Dernier message: 27/08/2006, 17h59
  3. Equations de maxwell
    Par invite8241b23e dans le forum Physique
    Réponses: 28
    Dernier message: 22/07/2005, 14h56
  4. Equations de Maxwell
    Par inviteccb09896 dans le forum Physique
    Réponses: 4
    Dernier message: 27/07/2004, 22h45
  5. Equations de Maxwell ...
    Par invite61942757 dans le forum Physique
    Réponses: 1
    Dernier message: 12/07/2004, 21h50