Bonjour a tous,
Objectif: Répondre a la question: Que signifie l'opération renversement du temps sachant que le temps est fléché et donc non inversible
1-Mécanique:
L'équation de Newton peut s'écrire:
M.d2x/dt2 = F(x)
Changeons le signe du temps t devient -t'
Comment se transforme l'équation de Newton, elle devient:
M.d2x/dt'2 = F(x)
Conclusion: l'équation de Newton est invariante par renversement du sens du temps.
Ceci est une opération purement Mathématique, a-telle un sens physique?
On peut réécrire l'équation de Newton sous la forme:
M.dv/dt = F(x)
Changement le signe du temps t devient -t'
On a :
- M.dv/dt'= F(x)
Attribuons le signe - a la vitesse:
M. d(-v)/dt' = F(x) avec v= -v' on a :
M.dv'/dt' = F(x)
Le sens physique est clair:
---------------------------------------------------------------------------------------------------------------------------------
Conclusion:
Le renversement mathématique du temps permet de générer une solution physique jumelle:
Si v est une solution alors -v est également une solution qui se correspondent par un changement de signe;
Le renversement du temps est une opération mathématique qui représente l'opération physique du renversement des vitesses.
--------------------------------------------------------------------------------------------------------------------------------------
2- Mécanique quantique:
L'équation de Schrodinger s'écrit:
i.h.d/dt F (r,t) = H (r).F(r,t)
F(r,t) est la fonction d'onde.
Renversons mathématiquement le temps t devient -t'
L'équation de Schrodinger devient:
-i.h.d/dt F(r,-t') = H (r).F(r, -t')
Effectuons une conjugaison complexe:
i.h.d/dt F*(r,-t') = H (r).F*(r, -t')
Posons G(t,r) = F*(r,-t') qui est donc solution de:
i.d/dt.G(r,t) = H(r).G(r,t)
---------------------------------------------------------------------------------------------------
Conclusion:
Le renversement mathématique du temps permet de générer une solution physique jumelle:
Si F(r,t) est une solution physique il existe solution physique G(r,t) qui se correspondent par une conjugaison complexe)
------------------------------------------------------------------------------------------------
3- Equation de Dirac
Celle-ci s'écrit formellement, comme l'équation de Schrödinger:
ihd/dt F(r,t) = H.F(r,t)
La différence étant que que F(r,t) représente 4 champs et non 1 seul comme l'équation de Schrodinger.
Ce 4 champ sous-tend la représentation fondamental du groupe de Lorentz (O(1,3) qui est un bi-spineur
Que se passe-t-il si on effectue un renversement mathématique de renversement du temps?
Dans ce cas le renversement mathématique du temps génère une solution physique jumelle, qui est un autre bi-spineur solution de la même équation de Dirac.
Le premier bi-spineur représente l'électron et le deuxième un positron.
L'opérateur qui fait correspondre les 2 solutions s'appelle opérateur de conjugaison de charge parce que le signe de la charge électrique change)
-----