Bonjour à tous,
Pouvez vous m'expliciter et m'étayer, s'il vous plaît, les deux paragraphes suivant qui figurent sur le lien suivant : https://theconversation.com/millenni...onjecture-4243
Voici les deux paragraphes dont il est question :
The classical versions of cohomology are used for the understanding of the flow and dispersion of electricity and magnetism (for example, Maxwell’s equations, which describe how electric charges and currents act as origins for electric and magnetic fields). These were refined by Hodge in what is now called the “Hodge decomposition of cohomology”.
Hodge recognised that the actual measurements of flow across regions always contribute to a particular part of the Hodge decomposition, known as the (p,p) part. He conjectured that any time the data displays a contribution to the (p,p) part of the Hodge decomposition, the measurements could have come from a realistic scenario of a system of flux and change across a region.
Quel lien existe-t-il entre les équations de Maxwell, et la - ième partie de décomposition de Hodge ?
Merci infiniment.
-----