Je vous préviens que je n'ai pas su résoudre cette énigme. La solution existe pourtant, mais je ne l'aurai que dans quelques jours. Bonne chance.
"100 prisonniers sont condamnés à mort. Le directeur de la prison propose un challenge à nos prisonniers :
- il leur attribue à tous un numéro entre 1 et 100
- il installe dans son bureau une armoire avec 100 tiroirs, dans chacun desquels il met aléatoirement un et un seul numéro entre 1 et 100. Chaque numéro apparait une et une seule fois.
Il propose à chaque prisonnier de venir ouvrir 50 tiroirs de son bureau, pour regarder le numéro qui est dedans. Les prisonniers sont d'abord réunis pour élaborer une stratégie puis envoyer dans un ordre aléatoire dans le bureau. Une fois passés dans le bureau, les prisonniers ne peuvent pas communiquer entre eux, ni changer les numéros de place, ni laisser un tiroir ouvert, ni coller un chewing-gum sur l'interrupteur de la lampe... Ils ne verront jamais les autres prisonniers avant le jugement dernier.
De deux choses l'une :
- Tous les prisonniers ont trouvé leur numéro en ouvrant les tiroirs auxquels ils avaient droit : ils sont tous graciés.
- Sinon, ils sont tous exécutés.
Un probabiliste dans le groupe des prisonniers dit : "aie aie aie ! On est mal : 1 chance sur 2^100 de s'en sortir". A-t-il vraiment raison ? N'y a-t-il pas un moyen d'augmenter cette probabilité ?
(Indication : il existe une stratégie telle qu'ils aient une probabilité > 1-ln2 de s'en sortir. Ça parait vraiment surprenant mais c'est possible)"
Trouvée sur un site consacré aux énigmes.
-----