Je replace ici un message qui devenait hors sujet ailleurs.
C'est EFFECTIVEMENT le problème ! Le si alors sinon n'est pas considéré comme un élément d'une formule, il est placé dans le texte explicatif de la théorie, alors que les mathématiques, à travers un langage informatique, propose d'exprimer ce test conditionnel de manière formelle.Envoyé par Sephi
Je pense qu'il s'agit sincèrement d'un problème épistémologique, car le "si alors sinon" n'est introduit qu'en informatique, il n'est pas introduit en mathématiques de manière formelle comme une fonction quelconque. Soyons clair, pendant nos études au lycée ou à l'université, on n'apprend pas en maths la fonction SiAlorsSinon(e,r1,r2) qui renvoie r1 si e est vraie et r2 si e est faux. Qu'est-ce qui empêche les mathématiciens d'introduire cette fonction et de l'utiliser si ce n'est un problème épistémologique ?
Et cependant, lorsqu'il est nécessaire de démontrer un théorème, on voit un "si alors sinon" apparaître à plusieurs endroits, mais de manière informelle, comme si cela ne faisait pas partie du théorème. Ce n'est qu'en informatique, où on est obligé de tout formaliser, que tout ceci devient carré et que le sialorssinon est défini comme il se doit.
Quelles conséquences me direz vous ? Elles sont potentiellement très importantes, ne serait-ce que pour la compréhension et la modélisation des phénomènes.
Exemple : le problème de la détermination de la trajectoire de N-corps à partir de leur influence gravitationnelle réciproque est un problème non résolu en physique, parce qu'on obtient une équation différentielle qu'on n'arrive pas à résoudre. En pratique cependant, on connait des techniques mathématiques (un algorithme) qui permettent d'approcher la solution en faisant varier le temps petit à petit et de façon discrète.
Pour autant que je sâche, l'équation différentielle fait partie des formules de la physique alors que l'algorithme de résolution non. Pourtant, fondamentalement, on peut obtenir n'importe quelle précision demandée, la "formule" a donc un pouvoir de prédiction très bon. Pourquoi diable alors ne pas la considérer dans le modèle ?
Autre exemple : en physique, on manipule souvent des formules comme X=cos(2*Pi*W*t+phi). En pratique, les physiciens se sentent obligés de passer à l'application numérique, en précisant que le résultat est approché.
Pourtant, mathématiquement, on ne connait aucun procédé qui permette de calculer Pi de façon exacte, à moins de ne jamais arrêter les calculs. Mais si on n'arrête pas les calculs pour trouver Pi, comme peut-on passer au calcul de X ? Ce problème apparaîtrait sans doute au grand jour si les physiciens prenaient la peine d'essayer d'écrire une formule complète (un algorithme), incluant le calcul de Pi.
Et pourquoi aucun physicien ne propose t-il d'ajouter une fonction "arrondi" dans le modèle ? Parce qu'une fonction arrondi se définit avec un sialorssinon ?
Et pourquoi aucun physicien ne propose t-il d'inclure le calcul symbolique dans le modèle, c'est à dire finalement à ne pas passer à l'app. num. et à garder l'expression ci-dessus autant que possible ? Parce que cela suppose l'inclusion d'un algorithme de calcul formel dans le modèle ?
Je ne suis pas si je suis clair. L'idée que je tente de formuler est que notre esprit est façonné par notre façon d'apprendre les mathématiques, et que le découplage artificiel entre formule mathématique et formule algorithmique introduit une orientation stéréotypée dans l'approche des problèmes et la modélisation. Le biais observé est à mon avis assez évident en physique ... pour un informaticien.
Mais saurais-je me faire comprendre ?
-----