logarithme (ln)
Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

logarithme (ln)



  1. #1
    invite33d8be82

    logarithme (ln)


    ------

    bonjour, j'aurais besoin d'aide pour l'etude de variation de la fonction suivante :

    h(x)= x²ln x - x²/2.

    je trouve comme dérivée ceci : h'(x)= 2x(ln x + 1).
    est ce que ma dérivée est bonne ?
    donc apres avoir fait la derivée je n'arrive pas à isoler x, pour faire le tableau de variation, pouvez-vous m'aider s'il vous plait, merci.

    -----

  2. #2
    invite2aa42af7

    Re : logarithme (ln)

    non ta dérivée est fausse c'est h'(x)=2xln(x)
    Tu as du faire une erreur de signe.
    Pour le tabelau de variation, pas besoin d'isoler x, il te suffit de faire un tableau à 3 lignes. Dans la première tu étudis ln(x) (tjs croissante), pis dans la seconde tu étudis 2x, et dans la troisième tu compose les 2.

  3. #3
    invite33d8be82

    Re : logarithme (ln)

    je te remerci pour tes information. je vais corriger mon erreur.

  4. #4
    invite33d8be82

    Re : logarithme (ln)

    j'ai vu mon erreur merci spx, mais voila comment indiquer le point d'intersection de cette courbe avec l'axe (x'x) ?
    je sait q'une chose ces que l'axe (x'x) et l'axe des abscisse.

  5. A voir en vidéo sur Futura
  6. #5
    invite2145cf94

    Re : logarithme (ln)

    bonjour, l'axe des abcisses a pour équation y=0. il faut donc que tu résolves h(x)=0

  7. #6
    invite33d8be82

    Re : logarithme (ln)

    ok je suis d'accord mais je me pome dans les calculs en somme je n'arrive pas a trouver le point d'intersection. vous pouvais m'expliquer merci

  8. #7
    invite2145cf94

    Re : logarithme (ln)

    x^2lnx-x^2/2=0 devient x^2(lnx-1/2)=0 devient x^2=0 ou lnx-1/2=0. et lnx-1/2=0 devient lnx=1/2 devient x=e^(1/2)

  9. #8
    invite33d8be82

    Re : logarithme (ln)

    mais oui c'était bete j'ai cherché compliquer ^^

Discussions similaires

  1. PB de logarithme
    Par invite77925936 dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 18/06/2009, 15h42
  2. logarithme
    Par inviteca1c611b dans le forum Mathématiques du collège et du lycée
    Réponses: 20
    Dernier message: 05/01/2007, 14h26
  3. logarithme
    Par invitee45a1dcc dans le forum Mathématiques du collège et du lycée
    Réponses: 14
    Dernier message: 25/11/2006, 16h09
  4. Logarithme !
    Par invite05f747f9 dans le forum Mathématiques du supérieur
    Réponses: 20
    Dernier message: 19/03/2006, 23h42
  5. logarithme
    Par invite21e7b6bc dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 04/12/2005, 20h47