Sens De Variation
Répondre à la discussion
Affichage des résultats 1 à 11 sur 11

Sens De Variation



  1. #1
    invite693d963c

    Sens De Variation


    ------

    Bonjour,

    Je voudrais avoir un éclaircissement sur une méthode pour déterminer le sens de variation

    Imaginons qu'on est => f(x) = x² -4x +3 sur [-1;5]

    La, je me dis je ne peux pas utiliser la méthode " On peut déterminer le signe de f(x2)- f(x1) en supposant que x1 < x2 < ?

    ? => Quel est le nombre que je dois utilisé Bon à part le faire en tatonnant je ne vois pas d'autres solution

    Sinon, je peux utiliser f(x) = (x+a)²+b = x² + 2xa +a² +b
    je trouve 2a = -4 ; a² +b = 3 ; b =-1 ; a =-2 ; (-2)² +b =3
    => f decroit sur [ -1;2 ] et croit sur [2;5]

    Le problème c'est que cette méthode est nouvelle pour moi et je voulais savoir si elle marche pour tout polynome ou c'est juste pour ce type de polynome seulement. Je voudrais pas laissez tomber ma chère methode f(x1) - f(x2) et je voudrais savoir s'il et possible de trouver le sens de variation sans tatonner

    Merci

    -----

  2. #2
    invite951d3e73

    Re : Sens De Variation

    Et bien pour ce type de fonction Le changement de variation ce fait pour ( si tu ne vois pas comment on arrive à ce résultat cf forme canonique ou demandes ).

    Donc tu peux déteminer quand cela varie et donc compléter tes inégalité a < x1 < x2 < b pour ainsi trouver le sens de variation.

    Cependant je crois que la formule donnée plus haut est propre à ce type de fonction (second degré) , à vérifier.

    EDIT: dans des cas simples , tu peux aussi le faire par lecture graphique.

  3. #3
    invite693d963c

    Re : Sens De Variation

    Ps: Je suis obligé de justifié algebriquement puisque j'abandonne la méthode dite "graphique"

  4. #4
    invite951d3e73

    Re : Sens De Variation

    Alors tu dis que ta fonction varie pour x = -(b/2a) et c'est bon.

    Si tu ne sais pas comment démontrer cela dis le nous

    Cordialement.

  5. A voir en vidéo sur Futura
  6. #5
    invite693d963c

    Re : Sens De Variation

    cypher_2 je crois que c'est bien le cas Tu utilise la forme canonique ou l'identification ?

  7. #6
    invite951d3e73

    Re : Sens De Variation

    Tu utilise la forme canonique ou l'identification ?
    Pour prouver que f(x) =ax²+bx+c varie en x = -b/2a ?

  8. #7
    invite693d963c

    Re : Sens De Variation

    Oui exactement

  9. #8
    invite951d3e73

    Re : Sens De Variation

    Et bien déjà connais - tu la forme canonique du fonction du type ?

    Si oui, poses dans ton prochain post la forme canonique de ax²+bx+c.

    Cordialement.

  10. #9
    invite693d963c

    Re : Sens De Variation

    ax² + bx² +c

    on pose a= x
    et
    2ab = bx² <=> 2b = b <=> b = b/2

    a² +2ab = ( a+b)² -b²



    Donc,

    ( x + b/2)² - (b/2)² +c
    ( x + b/2)² - b²/4 +c

  11. #10
    invite951d3e73

    Re : Sens De Variation

    Euh je comprends pas très bien ce que tu fais, partons avec la forme canonique


    Bien j'espère que tu connais cette forme, je vais donc t'expliquer.

    Avec cette forme, si on pose x1 < x2 , alors les seules modifications que peut subire cette inégalité en allant de x vers f(x) sont liés au carré et au signe de .

    Donc si a est positif, le seul changement dans l'inégalité ce fait avec le carré, or, le changement dans l'inégalité quand on applique un carré, ce fait quand celui ci est négatif. Celui ci devient négatif quand x < -b/2a. Donc tant que x n'atteint pas -b/2a alors le carré est négatif ( en allant de -00 vers -b/2a ), et alors si a<b alors f(a) > f(b) ( c'est pourquoi une fonction ax²+bx+c ayant a > 0 est décroissante en allant de -oo vers -b/2a. ) et quand il est positif x > -b/2a alors il n'y a aucun changement dans l'inégalité , f(a) < f(b) f est croissante.

    Puis si a est négatif, alors il y a deux changement dans l'inégalité, d'abord le carré, puis le signe de a. Donc tant que x n'atteint pas -b/2a (en allant de -00 vers -b/2a ) alors le carré est négatif (1er changement ) , et le a < 0 entraine un second changement dans l'inégalité. donc si a<b alors f(a) < f(b).
    Puis lorsque x atteint -b/2a alors le carré devient positif, et le seul changement dans l'inégalité ce fait avec le signe de a, donc si a<b f(a) > f(b).

    Cela montre, que la variation change, quand x atteint la valeur de -b/2a.

    J'espère que tu auras compris ...

  12. #11
    invite693d963c

    Re : Sens De Variation

    Citation Envoyé par cypher_2 Voir le message
    Euh je comprends pas très bien ce que tu fais, partons avec la forme canonique


    Bien j'espère que tu connais cette forme, je vais donc t'expliquer.

    Avec cette forme, si on pose x1 < x2 , alors les seules modifications que peut subire cette inégalité en allant de x vers f(x) sont liés au carré et au signe de .

    Donc si a est positif, le seul changement dans l'inégalité ce fait avec le carré, or, le changement dans l'inégalité quand on applique un carré, ce fait quand celui ci est négatif. Celui ci devient négatif quand x < -b/2a. Donc tant que x n'atteint pas -b/2a alors le carré est négatif ( en allant de -00 vers -b/2a ), et alors si a<b alors f(a) > f(b) ( c'est pourquoi une fonction ax²+bx+c ayant a > 0 est décroissante en allant de -oo vers -b/2a. ) et quand il est positif x > -b/2a alors il n'y a aucun changement dans l'inégalité , f(a) < f(b) f est croissante.

    Puis si a est négatif, alors il y a deux changement dans l'inégalité, d'abord le carré, puis le signe de a. Donc tant que x n'atteint pas -b/2a (en allant de -00 vers -b/2a ) alors le carré est négatif (1er changement ) , et le a < 0 entraine un second changement dans l'inégalité. donc si a<b alors f(a) < f(b).
    Puis lorsque x atteint -b/2a alors le carré devient positif, et le seul changement dans l'inégalité ce fait avec le signe de a, donc si a<b f(a) > f(b).

    Cela montre, que la variation change, quand x atteint la valeur de -b/2a.

    J'espère que tu auras compris ...


    Je vais essayer de comprendre ceci

Discussions similaires

  1. sens de variation
    Par invite0531b872 dans le forum Mathématiques du collège et du lycée
    Réponses: 0
    Dernier message: 07/11/2007, 15h36
  2. sens de variation de g(x)=racine(4(x-3)/(x-2))
    Par invite834dc0b9 dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 24/09/2007, 13h52
  3. Sens de variation
    Par invitede5974f3 dans le forum Mathématiques du collège et du lycée
    Réponses: 9
    Dernier message: 18/04/2007, 08h39
  4. sens de variation
    Par invite0f14653f dans le forum Mathématiques du collège et du lycée
    Réponses: 13
    Dernier message: 04/01/2007, 15h34
  5. Sens de variation du produit
    Par invite8367086e dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 03/10/2006, 13h25