Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

équation réduite de la tangente Δ



  1. #1
    ashlee

    équation réduite de la tangente Δ


    ------

    Bonjour je bloque à la question 2 ...

    soit la fonction définié qur R : f(x) = 5x / 2(x²+1)
    on note C la courbe représentative de f dans un repère (O,i,j)

    1) calculer f'(x) :

    voici ma réponse : -5 * [(x²-1) / (x²+1)²]

    2) déterminer l'équation de la tangente Δ à la courbe C en O, origine du repère.
    soit g la fonction dont Δ est la représentation graphique

    voici mon "bout" de réponse : y= f'(a)(x-a)+f(a)

    -----

  2. Publicité
  3. #2
    Duke Alchemist

    Re : équation réduite de la tangente Δ

    Bonjour (enfin re-)
    Citation Envoyé par ashlee Voir le message
    Bonjour je bloque à la question 2 ...

    soit la fonction définié qur R : f(x) = 5x / 2(x²+1)
    on note C la courbe représentative de f dans un repère (O,i,j)

    1) calculer f'(x) :

    voici ma réponse : -5 * [(x²-1) / (x²+1)²]
    S'il y a le 2, en gras au début, on le retrouve dans f '(x).

    2) déterminer l'équation de la tangente Δ à la courbe C en O, origine du repère.
    soit g la fonction dont Δ est la représentation graphique

    voici mon "bout" de réponse : y= f'(a)(x-a)+f(a)
    Quelles sont les coordonnées (surtout l'abscisse) du point O ?
    Tu remplaces dans la formule que tu proposes "a" par la valeur de l'abscisse.
    Il te faut déterminer f(a), puis f '(a) et enfin appliquer la formule.

    Duke.

  4. #3
    ashlee

    Re : équation réduite de la tangente Δ

    réponse : (-10 (x² -1)) / (4 (x²+1)²)

    O origine du repère vaut 0 donc y = f'(a)(x-a)+f(a)
    donc y = f'(0)(x-0)+f(0)

    f(0) = 0
    f'(0) = 5/2


    y = 5/2 (x-0)+0
    = 5x/2

  5. #4
    Duke Alchemist

    Re : équation réduite de la tangente Δ

    C'est bien cela.
    Ca va venir.
    Tu sembles avoir compris le truc

    Euh... 10/4 = 5/2.

  6. A voir en vidéo sur Futura
  7. #5
    ashlee

    Re : équation réduite de la tangente Δ

    merci de m'avoir aidé

    je vais faire le reste maintenant !!

Discussions similaires

  1. equation de la tangente et de la normale
    Par joojo dans le forum Mathématiques du supérieur
    Réponses: 13
    Dernier message: 05/11/2012, 20h31
  2. équation réduite tangente
    Par project52 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 02/12/2007, 16h01
  3. Equation d'une tangente
    Par Claiiree dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 11/10/2007, 20h15
  4. équation de tangente
    Par mamad dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 01/03/2007, 20h56