Répondre à la discussion
Affichage des résultats 1 à 22 sur 22

Factorisation?



  1. #1
    Universmaster

    Factorisation?


    ------

    Plop,

    une aide pour une factorisation?
    des idées?
    Une manière pour obtenir A en fonction de n avec une fonction?



    Merci

    Cordialement, Universmaster.

    -----
    "Dieu ne joue pas aux dés" [Albert Einstein]

  2. Publicité
  3. #2
    MiMoiMolette

    Re : factorisation?

    Yo, co-plopeur

    i c'est le i dans i²=-1 ?

    À vue de nez, je calculerais les premiers termes et j'essaierais de trouver une récurrence...
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  4. #3
    Universmaster

    Re : factorisation?

    yep i²=-1 ^^

    j'ai essayé jusqu'à 3 et ça devient vite le euh 'bazar' ^^
    "Dieu ne joue pas aux dés" [Albert Einstein]

  5. #4
    Universmaster

    Re : factorisation?

    Pardon j'ai pas mis ce que je trouvais de peur d'influencer mais si ça peut aider:

    "Dieu ne joue pas aux dés" [Albert Einstein]

  6. #5
    MiMoiMolette

    Re : factorisation?

    Voui, je pensais à la même chose :s et j'ai essayé le logarithme aussi, ça fait bof ^^

    Et en effet, jusqu'à 3, c'est trèèèèès laid (quoique...)
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  7. A voir en vidéo sur Futura
  8. #6
    Universmaster

    Re : factorisation?

    J'suis un fou j'suis aller à 4

    y'a une certain logique qui me rappelle les probas, mais pas en fonction de n, enfin y'aura toujours des "..." dans le calcul.

    genre pour la partie réelle, chaque paquet de nombre en racine (la flemme de tex):

    2*3*4 -2 -3 -4 -2*3 -2*4 -3*4 + 1

    pour l'imaginaire:

    2*3*4 -2 -3 -4 +2*3 + 2*4 +3*4 -1

    Tu vois l'idée?
    "Dieu ne joue pas aux dés" [Albert Einstein]

  9. Publicité
  10. #7
    MiMoiMolette

    Re : factorisation?

    Justement, ce sont ces termes : -2*3 -2*4 -3*4 qui sont soûlants
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  11. #8
    God's Breath

    Re : factorisation?

    Citation Envoyé par Universmaster Voir le message
    Pardon j'ai pas mis ce que je trouvais de peur d'influencer mais si ça peut aider:

    C'est certainement la meilleur idée.
    Comme est de module [tex]\sqrt{k+1}[tex]. Le module de est .
    Reste à calculer un argument.
    Cela revient à calculer , où , et ça, je pense pas que ce soit possible explicitement.

  12. #9
    Universmaster

    Re : Factorisation?

    Erf erf ...

    Je cherche encore un peu désespérément ...
    "Dieu ne joue pas aux dés" [Albert Einstein]

  13. #10
    Universmaster

    Re : Factorisation?

    Ok ok...

    Y'a-t-il au moins une méthode plus condensé pour la marquer du style qu'on puisse la donner à un logiciel style Maple.

    Exemple de God's breath:

    somme de k=1 à n-1 de arctan 1/sqrt k
    "Dieu ne joue pas aux dés" [Albert Einstein]

  14. #11
    God's Breath

    Re : factorisation?

    Citation Envoyé par Universmaster Voir le message

    y'a une certain logique qui me rappelle les probas, mais pas en fonction de n, enfin y'aura toujours des "..." dans le calcul.

    genre pour la partie réelle, chaque paquet de nombre en racine (la flemme de tex):

    2*3*4 -2 -3 -4 -2*3 -2*4 -3*4 + 1

    pour l'imaginaire:

    2*3*4 -2 -3 -4 +2*3 + 2*4 +3*4 -1
    C'est normal, tu essaie de développer brutalement le polynôme tout en l'évaluant en .

    Tu fais donc apparaître les fonctions symétriques (MiMoiMolette pourra t'expliquer ce que c'est, elle adore l'algèbre) de ces racines, qui sont les , d'où des résultats très laid.

    Ce que je propose avec ne vaut pas mieux, mais il y a peut-être une simplification trigonométrique que je ne vois pas ; il faut dire que je n'y crois pas trop.

  15. #12
    Universmaster

    Re : Factorisation?



    Remarque, comme diraient certains, c'est esthétiquement très jolie
    "Dieu ne joue pas aux dés" [Albert Einstein]

  16. Publicité
  17. #13
    MiMoiMolette

    Re : factorisation?

    Citation Envoyé par God's Breath Voir le message
    Tu fais donc apparaître les fonctions symétriques (MiMoiMolette pourra t'expliquer ce que c'est, elle adore l'algèbre)
    Goooood's Breath ?

    Petit cadeau pour toi, pour te remercier avec toute la gratitude qu'il faut, tout l'amour que j'éprouve à la lecture de ta phrase !

    (déroule le spoiler ! )

     Cliquez pour afficher



    Sinon, est-ce qu'on ne pourrait pas dériver pour voir si ça nous donne quelque chose de plus joli ?


    PS : Universmaster -> le premier terme se note (n-1)!
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  18. #14
    Universmaster

    Re : Factorisation?

    ah oui, j'avais vu mais pas recopier en latex loool
    Euh dérivée A? pour en venir ou? on peut dériver avec du i ?


    PS: t'énerve pas loool
    "Dieu ne joue pas aux dés" [Albert Einstein]

  19. #15
    MiMoiMolette

    Re : Factorisation?

    Bin i c'est un nombre comme les autres. Si tu veux, je crois que ça peut agir comme une constante (La bouche de Dieu me corrigera s'il le faut niark niark niark ). Mais je parlais de dériver la somme des arctangentes... (et je n'arrive pas à voir d'où elle sort la formule... P'tet bien du souffle de Dieu )


    PS : mais non mais non, je ne m'énerve pas !!!
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  20. #16
    God's Breath

    Re : Factorisation?

    Citation Envoyé par Universmaster Voir le message
    Ok ok...

    Y'a-t-il au moins une méthode plus condensé pour la marquer du style qu'on puisse la donner à un logiciel style Maple.

    Exemple de God's breath:

    somme de k=1 à n-1 de arctan 1/sqrt k
    Dans Maple, on rentre : sum(arctan(sqrt('k')),'k'=1..n-1) ;

    Pour MiMoiMolette,
    Je n'ai pu résister.
    J'ai l'argument sous la forme de la somme partielle de la série de terme général .

    Cette série est divergente, sa somme partielle a pour équivalent , que l'on ne sait pas calculer, mais dont on sait que c'est équivalent à .

    Finalement, , et je n'ai pas mieux pour l'instant.

    Pour universmaster, il pourra peut-être trouver ma somme en faisant une recherche internet sur "polylogartihm".

  21. #17
    MiMoiMolette

    Re : Factorisation?

    Pour MiMoiMolette,
    Je n'ai pu résister.
    Tu ne résisteras pas à mes coups

    Sinon, i peut-il être considéré comme une constante ? Et quel est son nom ? ^^

    Et je ne vois pas comment tu obtiens de l'arctan :s (bin vi, squattage de discussion, spécialité de molette :>)
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  22. #18
    Universmaster

    Re : Factorisation?

    Bon avec mon niveau de terminal S j'suis poooosé pour le polylogartihme.
    Sinon j'vois pas comment t'arrives aux arctan (avec ce polylogartihme?)
    "Dieu ne joue pas aux dés" [Albert Einstein]

  23. Publicité
  24. #19
    alien49

    Re : Factorisation?

    Si je peux me permettre de répondre pour les arctan

    (1+a*i) = |1+a*i|*(cos(b)+i*sin(b)) où b = arg(1+a*i)

    d'où

    de plus on a cos(b) du signe de 1 donc positif, donc b appartient à ]-Pi/2;Pi/2[

    et finalement b = arctan(a)

  25. #20
    Flyingsquirrel

    Re : Factorisation?

    Ça n'est pas plus simple de représenter un point quelconque du plan complexe avec son argument sur un dessin et de lire directement que la tangente de l'argument vaut le rapport (partie imaginaire)/(partie réelle) ?

  26. #21
    alien49

    Re : Factorisation?

    Citation Envoyé par Flyingsquirrel Voir le message
    Ça n'est pas plus simple de représenter un point quelconque du plan complexe avec son argument sur un dessin et de lire directement que la tangente de l'argument vaut le rapport (partie imaginaire)/(partie réelle) ?

    Si aussi mais c'est plus long à poster, parce qu'il faut faire le dessin et tout
    Nan plus sérieusement je pense que le principal danger c'est de prendre le cas particulier où le point se trouve à droite de l'axe des ordonnées, et d'écrire que l'argument est égal à l'arctan, sans voir que s'il se trouvait de l'autre côté, il y aurait un Pi qui se baladerait , avec la méthode "calculatoire", le risque de se faire tromper par une figure est moins grand je pense

  27. #22
    Universmaster

    Re : Factorisation?

    Ok pour le arctan, démo claire de alien49 ^^ merci.

    J'examine le reste demain après les cours, là j'vais me coucher...

    Bonne nuit à tous ! ++
    "Dieu ne joue pas aux dés" [Albert Einstein]

Discussions similaires

  1. Factorisation de a^n - b^n
    Par kNz dans le forum Mathématiques du collège et du lycée
    Réponses: 23
    Dernier message: 28/05/2015, 15h35
  2. Factorisation
    Par neutrino éléctronique dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 10/01/2008, 21h26
  3. Factorisation
    Par macx dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 13/09/2006, 16h41
  4. factorisation
    Par albja dans le forum Mathématiques du supérieur
    Réponses: 28
    Dernier message: 12/02/2006, 14h28
  5. factorisation
    Par smailo03 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 04/01/2006, 23h31