Répondre à la discussion
Affichage des résultats 1 à 29 sur 29

Déterminer algébriquement les coordonnées des points d'intersection de deux courbes



  1. #1
    anthony59115

    Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Bonjour, j'ai un petit problème avec un exercice :

    Soit P la parabole d'équation y=x²-6x+8 et
    soit P' la parabole d'équation y=-x²+4x

    et je dois déterminer algébriquement les coordonnées des points d'intersection de P et P'
    Pouvez-vous m'aider ?

    -----


  2. Publicité
  3. #2
    Arkangelsk

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Salut,

    Je te donne une piste :

    Soit y1 l'équation de la première parabole P.
    Soit y2 l'équation de la deuxième parabole P'.

    Pour déterminer (algébriquement) les coordonnées des points d'intersection de P et P', pose y1 = y2. Tu vas arriver à une équation du second degré que tu résoudras. Si je ne me trompe pas, tu obtiendras 2 points d'intersection A(x1,y1) et B(x2,y2), où x1 et x2 sont les racines de l'équation du second degré.

  4. #3
    anthony59115

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Je passe donc par le calcule de Delta ?

  5. #4
    Arkangelsk

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Je passe donc par le calcule de Delta ?
    Tu peux. Mais, n'y a-t-il pas une racine évidente ?

  6. #5
    anthony59115

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    euh jvois pas

  7. A voir en vidéo sur Futura
  8. #6
    Arkangelsk

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    euh jvois pas
    Une racine évidente, genre -1, 0 ou 1 ?

  9. Publicité
  10. #7
    anthony59115

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Citation Envoyé par Arkangelsk Voir le message
    Une racine évidente, genre -1, 0 ou 1 ?
    oups j'avais pas vu ^^ mais bon comment prouver que la racine est = à 1 ?

  11. #8
    anthony59115

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Citation Envoyé par anthony59115 Voir le message
    oups j'avais pas vu ^^ mais bon comment prouver que la racine est = à 1 ?
    euh grosse erreur ^^ comment je prouve que que la racine est = à -1

  12. #9
    Arkangelsk

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Eh bien, il n'y a rien a prouvé (sur le "comment tu l'as vu"). Enfin, je t'ai aidé un peu . Pour avoir l'autre racine, tu dois connaître d'après ton cours ... la formule donnant le produit des racines.

    Je te conseille fortement de calculer le discriminant est de retrouver ces 2 racines.

    PS : C'est bien 1.

  13. #10
    anthony59115

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    J'ai trouvé un programme que j'ai mis sur ma chère TI-83 et j'ai bien trouvé :
    x=-4 et
    x'=-1
    mais comment peut-on le faire par calcul ??

  14. #11
    hhh86

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Citation Envoyé par anthony59115 Voir le message
    Bonjour, j'ai un petit problème avec un exercice :

    Soit P la parabole d'équation y=x²-6x+8 et
    soit P' la parabole d'équation y=-x²+4x

    et je dois déterminer algébriquement les coordonnées des points d'intersection de P et P'
    Pouvez-vous m'aider ?
    On suppose que A(x; y) est un point d'intersection de P et P', alors
    y=x²-6x+8 et y=-x²+4x
    x²-6x+8=-x²+4x
    2x²-10x+8=0
    x²-5x+8=0
    (x-5/2)²-25/4+32/4=0
    (x-5/2)²=-7/4, ce qui est absurde
    Donc P et P' n'ont pas de point d'intersection sur R

  15. #12
    anthony59115

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Ah oui !!!! c'est bon j'ai compris (fallait juste bien regarder dans mon cahier )

  16. Publicité
  17. #13
    Arkangelsk

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Tu as oublié de diviser 8 par 2 :

    2x²-10x+8=0
    x²-5x+8=0

  18. #14
    anthony59115

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Citation Envoyé par hhh86 Voir le message
    On suppose que A(x; y) est un point d'intersection de P et P', alors
    y=x²-6x+8 et y=-x²+4x
    x²-6x+8=-x²+4x
    2x²-10x+8=0
    x²-5x+8=0
    (x-5/2)²-25/4+32/4=0
    (x-5/2)²=-7/4, ce qui est absurde
    Donc P et P' n'ont pas de point d'intersection sur R
    Pourtant il y en a bien 2 ^^ si tu fait comme moi et que tu calcules Delta pour voir combien il y a de racines , tu en trouve 2 donc dans ce cas il y a forcemment 2 points d'intersection

  19. #15
    Arkangelsk

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Ah oui !!!! c'est bon j'ai compris (fallait juste bien regarder dans mon cahier )
    Les coordonnées des points d'intersection sont donc ?

  20. #16
    anthony59115

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Citation Envoyé par anthony59115 Voir le message
    Delta pour voir combien il y a de racines , tu en trouve 2
    car Delta est positif

  21. #17
    anthony59115

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Citation Envoyé par Arkangelsk Voir le message
    Les coordonnées des points d'intersection sont donc ?
    J(4;0) et I(1;3)

  22. #18
    anthony59115

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Merci beaucoup ^^

  23. Publicité
  24. #19
    Arkangelsk

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    J(4;0) et I(1;3)
    C'est OK .

  25. #20
    hhh86

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Citation Envoyé par Arkangelsk Voir le message
    Tu as oublié de diviser 8 par 2 :
    autant pour moi

  26. #21
    hhh86

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    On suppose que A(x; y) est un point d'intersection de P et P', alors
    y=x²-6x+8 et y=-x²+4x
    x²-6x+8=-x²+4x
    2x²-10x+8=0
    x²-5x+4=0
    (x-5/2)²-25/4+16/4=0
    (x-5/2)²-9/4=0
    donc x=5/2+3/2=4 ou x=5/2-3/2=-1
    Ensuite il faut calculer y en fonction de x mais vous avez déjà les réponses

  27. #22
    lulunulenmaths

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    bonjour alors mon problème est d'autant plus important que c'est un DM de math ke je dois rendre jeudi

    l 'exercice ke je n'arriv pa a traité est le suivant:
    (g une fondtion f defini sur [0 ; 10]par f(x)=0.2x²-0.8x+5)

    je dois determiner par le calcul les coordonnées des points d'intersection de P avec les droites suivantes :
    D1 est la doroite d'équation y=0.7x
    D2 est la droite passant prar l'origine et le point le coordonnées (10 ; 12)
    D3 est la droite de coefficient directeur 1.2 et d'ordonnée a l'origine 5.

    Voila é merci d'avance pour votre aides qui me sera trés précieuse

  28. #23
    Miss-jess

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Bonsoir .. pour demain j'ai une préparation sur les coordonées des points d'intersection de deux courbe ..
    mais je ne me rapelle plus comment on fait .. !
    l'énoncer est : Détermije algébriquement les point d'intersection des droite d'équation x-2y=5 et 3x-2y=1 .. Heeeeeelp !! Merci d'avancee ..

  29. #24
    Titiou64

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    bonsoir,

    tu aurais du te créer ta propre discussion, ça aurait été plus clair...
    Le truc c'est d'écrire y=... puis de dire y1=y2. Tu vas trouver une équation juste avec des x. Le x sera l'abscisse du point d'intersection, il ne te restera plus qu'a chercher l'ordonnée
    "Quand le calcul est en contradiction avec l'intuition, je refais le calcul"

  30. Publicité
  31. #25
    Miss-jess

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Merçi Maintenant j'en ai une avec une courbe et une droite ... mais quand je calcule le delta c'est vraiment faux de chez faux .. l'énoncer est recherche les coordonées des point d'intersection de la parabole y+x(au carré) +2x-15=0 et la droite 2x+3y=-1 aideeeeeeeer moiiiii !!!!!!

  32. #26
    Titiou64

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    il faut appliquer exactement la même méthode.
    Je trouve un delta qui vaut 568, sauf erreur de ma part
    "Quand le calcul est en contradiction avec l'intuition, je refais le calcul"

  33. #27
    Tryss

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Citation Envoyé par Titiou64 Voir le message
    il faut appliquer exactement la même méthode.
    Je trouve un delta qui vaut 568, sauf erreur de ma part
    Je trouve plutôt un delta de 568/9

  34. #28
    Titiou64

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    ok. j'avais multiplié par 3 pour enlever les 1/3
    Dernière modification par Titiou64 ; 05/09/2011 à 22h07.
    "Quand le calcul est en contradiction avec l'intuition, je refais le calcul"

  35. #29
    Tryss

    Re : Déterminer algébriquement les coordonnées des points d'intersection de deux courbes

    Citation Envoyé par Titiou64 Voir le message
    ok. j'avais multiplié par 3 pour enlever les 1/3
    Hérétique !

    PS: j'aurai du y penser aussi... mea-culpa

Sur le même thème :

Discussions similaires

  1. Déterminer algébriquement les coordonnées des point de deux courbe (1erS)
    Par neokiller007 dans le forum Mathématiques du supérieur
    Réponses: 28
    Dernier message: 01/10/2008, 12h57
  2. Coordonnées d'un vecteur et distance entre deux points (de l'espace)
    Par neokiller007 dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 14/06/2008, 19h26
  3. Points d'intersection des graphes de deux fonction avec paramètre
    Par David Legrand dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 02/05/2008, 20h00
  4. Déterminer les coordonnées d'un point
    Par The Most dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 10/03/2007, 19h25
  5. Comment déterminer les coordonnées de points sur une courbe ?
    Par Dolphin+ dans le forum TPE / TIPE et autres travaux
    Réponses: 1
    Dernier message: 20/05/2005, 09h42