Trouver le minimum d'une fonction
Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Trouver le minimum d'une fonction



  1. #1
    invite99c1d8a7

    Trouver le minimum d'une fonction


    ------

    Bonjour,

    je dois trouver le minimum de cette fonction:



    j'ai fait une recherche pour savoir comment faire, mais je suis tombé sur les "dérivées" mais je n'ai pas encore vu les dérivées

    je voudrais savoir simplement la méthode

    merci

    -----

  2. #2
    invite1599fe6a

    Re : Trouver le minimum d'une fonction

    Il faut que tu applique le programme de calcul en suivant les propriétés avc la fonction supérieure ou égale à 0 tu a compris?

  3. #3
    invite99c1d8a7

    Re : Trouver le minimum d'une fonction

    non, j'ai pas tout compris ^^

  4. #4
    invite5150dbce

    Re : Trouver le minimum d'une fonction

    Plusieurs méthodes sont possibles :

    1/si tu as fait le chapitre sur le second degré, tu sais faire les tableaux de variations de ces fonctions donc tu sais que leur minimum ou maximum (ça dépend de a) est f(-b/2a) sur R
    ici avec a=17 et b=-8

    2/Sinon, il faut trouver un réel m appartenant à R tel que pour tout x appartenant à R f(m)<=f(x)
    Donc, il faut f(m)-f(x)<=0
    Or f(m)-f(x)
    =17m²-8m-17x²+8x
    =(m-x)[17(m+x)-8]
    =(m-x)[17m+17x-8]
    Dressons le tableau de signe de cette expression :
    x -inf m (-17m+8)/17 +inf
    m-x + 0 - -
    17m+17x-8 - - 0 +
    f(m)-f(x) - 0 + 0 -
    Pour que f(m)-f(x)<=0, on doit avoir m=(-17m+8)/17
    <==>m=4/17

  5. A voir en vidéo sur Futura
  6. #5
    Arkangelsk

    Re : Trouver le minimum d'une fonction

    Salut,

    Citation Envoyé par hhh86 Voir le message
    Plusieurs méthodes sont possibles :

    1/si tu as fait le chapitre sur le second degré, tu sais faire les tableaux de variations de ces fonctions donc tu sais que leur minimum ou maximum (ça dépend de a) est f(-b/2a) sur R
    ici avec a=17 et b=-8

    2/Sinon, il faut trouver un réel m appartenant à R tel que pour tout x appartenant à R f(m)<=f(x)
    Donc, il faut f(m)-f(x)<=0
    Or f(m)-f(x)
    =17m²-8m-17x²+8x
    =(m-x)[17(m+x)-8]
    =(m-x)[17m+17x-8]
    Dressons le tableau de signe de cette expression :
    x -inf m (-17m+8)/17 +inf
    m-x + 0 - -
    17m+17x-8 - - 0 +
    f(m)-f(x) - 0 + 0 -
    Pour que f(m)-f(x)<=0, on doit avoir m=(-17m+8)/17
    <==>m=4/17
    hhh86, il vaut mieux indiquer une piste à K-B plutôt que de résoudre tout l'exercice à sa place !

  7. #6
    invite5150dbce

    Re : Trouver le minimum d'une fonction

    Citation Envoyé par Arkangelsk Voir le message
    Salut,



    hhh86, il vaut mieux indiquer une piste à K-B plutôt que de résoudre tout l'exercice à sa place !
    Oui tu as raison

  8. #7
    invite99c1d8a7

    Re : Trouver le minimum d'une fonction

    merci beaucoup, j'ai trouvé

Discussions similaires

  1. maximum et minimum d'une fonction
    Par invite3ef66143 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 24/09/2009, 20h49
  2. minimum d'une fonction
    Par invite804ce8b3 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 04/01/2008, 21h26
  3. Nom d'une méthode pour trouver le max d'une fonction inconnue
    Par invite6e4f6d01 dans le forum Mathématiques du supérieur
    Réponses: 13
    Dernier message: 28/11/2007, 15h22
  4. minimum maximum d'une fonction a 2 variables
    Par invite0e55e97c dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 19/10/2007, 16h48
  5. Trouver l'équation d'une fonction
    Par inviteba9bce0d dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 18/06/2007, 23h01