Répondre à la discussion
Affichage des résultats 1 à 22 sur 22

Exos trés complexe



  1. #1
    dictapo

    Exos trés complexe

    Bonjours a tous je suis nouveau aussi je trouve que vous faite du bon travail. J'espere vraiment que vous allez pouvoir m'aider
    Voila j'ai exo a faire mais je comprends rien du tout voici l'énoncé :
    "Dans cet exercice f est une fonction définie et croissante sur R, la suite (un) est définie par un+1= f(un) et par son premier terme u0. On sait aussi que u0 < u1"

    1) Montrer par recurrence que la suite (un) est croissante.
    2) Que peut-on dire de la suite (un) si f est décroissante? Et si f est décroissante et u1<u0 ? Justifier

    Merci d'avance pour votre aide

    -----


  2. Publicité
  3. #2
    Arkangelsk

    Re : Exos trés complexe

    Bonjour et bienvenue sur FS !

    Quelles sont tes hypothèses pour la récurrence ?

  4. #3
    afolab

    Re : Exos trés complexe

    Comment fais-tu un raissonnement par récurrence ?

  5. #4
    dictapo

    Re : Exos trés complexe

    Ben d'abord je fais une initialisation : Donc a u0<u1 sa marche
    Aprés l'hérédité : faut montrer que pour tout n>0 on un+1<un+2

    D'ou on a un<un+1 ensuite j'applique la fonction et on a f(un)<f(n+1)
    un+1<un+2
    Apres on conclu en disant quelle vraie pour tout n

    Mais je pense que j'ai faux et que c'est mal rédigé

  6. #5
    dictapo

    Re : Exos trés complexe

    par contre pour le 2 j'ai aucune, idée

  7. A voir en vidéo sur Futura
  8. #6
    Arkangelsk

    Re : Exos trés complexe

    Mais je pense que j'ai faux et que c'est mal rédigé
    Non, c'est bien cela. Après, pour la rédaction, je ne comprends pas trop pourquoi tu écris "D'où" :
    D'ou on a un<un+1 ensuite j'applique la fonction et on a f(un)<f(n+1)
    Il n'y a pas de rapport cause/conséquence. Mieux vaut dire : "Supposons ou encore mieux, soit la propriété : , nous allons maintenant montrer que .

    par contre pour le 2 j'ai aucune, idée
    Même pas une petite idée ?

  9. Publicité
  10. #7
    dictapo

    Re : Exos trés complexe

    je dirai peut etre que si est décroissante alors un aussi
    Et si f est décroissante et u1<u0 alors peut etre (un) croissante mais comment le justifier ca je sais pas

  11. #8
    dictapo

    Re : Exos trés complexe

    quelqu'un peut-il m'aider pour la questions 2 svp?

  12. #9
    fleur74

    Re : Exos trés complexe

    Salut à tous!

    Mon petit ami est docteur en math et il aime ça, je lui ais demandé la réponse a ta question.
    Voici ce qu'il a répondu :

    1.a) uo<u1 ==> f(uo)<f(u1), car f est croissante

    f(uo)<f(u1) ==> u1=f(uo)<u2=f(u1)

    1.b) si un-1<un ==> f(un-1)<f(un), car f est croissante

    ==> un=f(un-1) < f(un)=un+1

    1.c) pr tt n, un < un+1 ==> un est croissante

    J espère que tu as compris, car je peux rien faire pour t'aider je fais des études médicales

  13. #10
    Arkangelsk

    Re : Exos trés complexe

    Citation Envoyé par dictapo Voir le message
    quelqu'un peut-il m'aider pour la questions 2 svp?
    Prends un exemple, tu y verras plus clair.

  14. #11
    dictapo

    Re : Exos trés complexe

    merci pour ton aide , tu pourrais pas lui demandé de developper un peut plus pour que je puisse mieux comprendre svp?
    Merci encore pour ton aide

  15. #12
    dictapo

    Re : Exos trés complexe

    je peux avoir une piste s'il vous plait

  16. Publicité
  17. #13
    Arkangelsk

    Re : Exos trés complexe

    Est-ce que tu as choisi une fonction décroissante et regardé ce qui se passe dans un cas particulier ?

  18. #14
    dictapo

    Re : Exos trés complexe

    oui, je trouve que c'est croissant , mais je sais pas comment le justifier

  19. #15
    dictapo

    Re : Exos trés complexe

    je doit pas m'appuiyer sur le graphique pour justifier donc je sais pas comment le transformer a l'ecrit

  20. #16
    Arkangelsk

    Re : Exos trés complexe

    Citation Envoyé par dictapo Voir le message
    je doit pas m'appuiyer sur le graphique pour justifier donc je sais pas comment le transformer a l'ecrit
    Est-ce que tu peux expliciter ton exemple ?

  21. #17
    dictapo

    Re : Exos trés complexe

    Ben j'ai pris une fonction décroissante , et une suite avec u0<u1 aprés je la trace ma suite et je vois quelle est croissante mais comment l'expliquer par calcul

  22. #18
    dictapo

    Re : Exos trés complexe

    allez svp donné une moi, une piste

  23. Publicité
  24. #19
    platypus55

    Re : Exos trés complexe

    Bonjour à tous.
    Je suis nouveau ici, et ça fait un moment que je regarde votre forum, voila j'ai franchi le pas, je suis inscrit.

    Alors revenons à nos moutons.
    Tu as une suite définie par une relation de récurrence. A priori tu veux un indice, donc si f est décroissante, que peux tu dire de U(2n) et U(2n+1) ?
    Les aspirations des pauvres ne sont pas très éloignés des réalités des riches !

  25. #20
    dictapo

    Re : Exos trés complexe

    que un >un+1

  26. #21
    dictapo

    Re : Exos trés complexe

    bon ben merci quand meme je sais pas comment je vais faire mais bon merci quand meme

  27. #22
    Arkangelsk

    Re : Exos trés complexe

    Citation Envoyé par dictapo Voir le message
    Ben j'ai pris une fonction décroissante , et une suite avec u0<u1 aprés je la trace ma suite et je vois quelle est croissante mais comment l'expliquer par calcul
    Ce n'est pas le sens de ma question. "Expliciter" signifie donner une fonction décroissante (un exemple). C'est souvent utile pour mieux appréhender ce qui se passe...

Sur le même thème :

Discussions similaires

  1. Exos d´analyse complexe
    Par christophe_de_Berlin dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 22/10/2008, 11h32
  2. mécanisme d'action des vésicants, très très urgent: pour lundi
    Par melany88 dans le forum TPE / TIPE et autres travaux
    Réponses: 0
    Dernier message: 15/03/2008, 09h45
  3. problème de faux(attention très très complexe et c'est pas des salades ^^)
    Par koala6666 dans le forum Science ludique : la science en s'amusant
    Réponses: 13
    Dernier message: 03/09/2006, 20h18
  4. Un complexe HLM à très faible consommation énergétique
    Par RSSBot dans le forum Commentez les actus, dossiers et définitions
    Réponses: 3
    Dernier message: 20/03/2006, 10h08