Optimisation
Répondre à la discussion
Affichage des résultats 1 à 10 sur 10

Optimisation



  1. #1
    invite8a609d60

    Optimisation


    ------

    Bonsoir,

    Je vais vous noter le problème en entier, pour plus de clarté.
    "On considère un terrain rectangulaire de dimension L et l et d'aire A =900 m2. On veut construire une clôture autour de ce terrain. Quelle sont les dimensions L et l qui rendent minimal le coût de la construction de la clôture ? "

    Alors, personnellement, j'ai tout d'abord pensé à faire un carré, ce qui pour moi aurai été la solution, mais, on ne peut pas ...
    Alors j'ai posé
    Aire = L*l = 900 et
    Périmètre = 2(L+l )

    Mais je n'arrive pas à trouver un rapport pour ces deux équation ...
    Merci de votre aide !

    -----

  2. #2
    invitecf23c94c

    Re : Optimisation

    Quel est ton niveau d'étude ?

    Exprime L en fonction de l dans la 1ere
    remplace dans la seconde
    calcule la dérivée
    Puis tableau de variation

  3. #3
    invite8a609d60

    Re : Optimisation

    Okay, j'y avais songé.
    Mais je trouve une dérivée de :

    f'(x) = (6l(carré) - 1800)/l(carré)
    Avec f(x) longueur du périmètre.
    f'(0) = (racine carré de 300 )

    Me suis je trompé jusque là ?

  4. #4
    invitec17b0872

    Re : Optimisation

    Bonjour,

    Ce "6" est étrange...
    A=L.l donc l=A/L
    Injectons dans la formule du périmètre : p=2(L+A/L) soit dans vos notations f(x)=2(x+A/x) où A=900.
    Il suffit ensuite de dériver p par rapport à L et de chercher la racine de la dérivée (càd la valeur de L pour laquelle la dérivée s'annule).

  5. A voir en vidéo sur Futura
  6. #5
    invite8a609d60

    Re : Optimisation

    J'obtient une dérivée sous forme de :

    f(x)' = 2-((4xA)/xcarré)

    J'ai un doute ...

  7. #6
    invitec17b0872

    Re : Optimisation

    Arf c'est presque ça.
    Le terme en 2x donne 2 quand on le dérive.
    Le terme en 2A/x donne -2A/(x²) quand on le dérive.
    La dérivée d'une somme, c'est la somme des dérivées, si bien que :
    f'(x)=2-2A/(x²).

    On continue

  8. #7
    invite8a609d60

    Re : Optimisation

    Donc on obtient pour
    f'(x) = 0 Sur le domaine de définition de ]0 ; +OO[

    x1 = 30 (mais on a un carré alors ... )

  9. #8
    invitec17b0872

    Re : Optimisation

    Eh oui, le quadrilatère d'aire fixée qui minimise son périmètre, c'est le carré.

  10. #9
    invite8a609d60

    Re : Optimisation

    Mais on n'est sencé considérer un terrain rectangulaire.
    Disont qu'il faut joué avec les mots alors et dire qu'un carré est un rectangle particulier ...
    Merci en tout cas, bonne journée !

  11. #10
    invitec17b0872

    Re : Optimisation

    Citation Envoyé par bidoo Voir le message
    Mais on n'est sencé considérer un terrain rectangulaire.
    Disont qu'il faut joué avec les mots alors et dire qu'un carré est un rectangle particulier ...
    Merci en tout cas, bonne journée !
    C'est précisément ça oui.
    Bonne continuation !

Discussions similaires

  1. optimisation
    Par invitee09495a7 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 15/10/2009, 16h43
  2. help optimisation
    Par invite776b55b5 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 29/01/2006, 18h58
  3. Optimisation
    Par invite44e97bac dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 31/12/2005, 12h45
  4. optimisation
    Par invite4b0b4f95 dans le forum Mathématiques du supérieur
    Réponses: 16
    Dernier message: 27/12/2005, 22h22
  5. Optimisation
    Par invitec203e4a1 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 25/05/2004, 17h10