Bonjour, j'ai un problème d'intégrale à résoudre, le voici :
Le graphique présente un demi-cercle de centre (0;0) et de rayon 2
f(x) = (4-x^2)^(1/2)
Je fais la primitive et je trouve : (2/3)(4-x^2)^(3/2) ou (2/3)(4-x^2)(4-x^2)^(1/2)
Après je fais l'intégrale qui s'écrit :
S{2;-2} f(x) dx = [F(x)]{2;-2} = [F(2)]-[F(-2)] = 2/3 (4-2^2)^(3/2) - 2/3 (4-2^2)^(3/2) =
0-0=0 ... voilà,je trouve 0 alors que ca doit approcher les pi * 2 = 6,30
La fonction a un maximum à y=2
-----