Limite d'une fonction trigonometrique
Répondre à la discussion
Affichage des résultats 1 à 20 sur 20

Limite d'une fonction trigonometrique



  1. #1
    inviteaf7e4316

    Limite d'une fonction trigonometrique


    ------

    Bonjour,

    Je bloque sur cette limite, quelqu'un pourrait m'aider svp?
    lim(x->pi/2) cosx / (1-sinx)

    merci

    -----

  2. #2
    Jon83

    Re : Limite d'une fonction trigonometrique

    Bonsoir!

    Tu peux écrires:



    Je te laisse conclure...

  3. #3
    inviteaf7e4316

    Re : Limite d'une fonction trigonometrique

    Donc c'est la limite de [cosx-cospi/2 / (x - pi/2)] + limite de [1-sinx / x-pi/2] quand x tend vers pi/2

    OR lim(x->pi/2) [cosx-cospi/2 / (x - pi/2)] = {cosx}' = -sinx

    Mais je ne sais plus continuer :/

  4. #4
    inviteaf7e4316

    Re : Limite d'une fonction trigonometrique

    Desole c'est f'(pi/2) or f'(pi/2) = -sin pi/2 = -1

  5. A voir en vidéo sur Futura
  6. #5
    Jon83

    Re : Limite d'une fonction trigonometrique

    Pas du tout! Si j'ai mis l'expression sous cette forme, ce n'est pas pour me faire plaisir....
    - examine bien le numérateur: ça ne te rappelle rien?
    - idem pour le dénominateur...

    EDIT: nos message se sont croisés... mais regarde un peu mieux car tu écris des sottises!!!
    Dernière modification par Jon83 ; 16/04/2012 à 18h39.

  7. #6
    inviteaf7e4316

    Re : Limite d'une fonction trigonometrique

    Si pour le numerateur :

    lim(x->pi/2) cosx-cospi/2 / (x - pi/2) = -1

    MAis le denominateur ne me dit rien

  8. #7
    Jon83

    Re : Limite d'une fonction trigonometrique

    Citation Envoyé par jojoxxp4 Voir le message
    Si pour le numerateur :

    lim(x->pi/2) cosx-cospi/2 / (x - pi/2) = -1

    MAis le denominateur ne me dit rien
    Pas du tout.... Pour le numérateur, tu ne reconnais pas la forme générale ???

  9. #8
    inviteaf7e4316

    Re : Limite d'une fonction trigonometrique

    Si et donc lim(x->pi/2) cosx-cospi/2 / (x - pi/2) = f'(pi/2) = -sin pi/2 = -1 ( étant donné que f(x) = cosx et f'(x) = -sinx)

  10. #9
    Jon83

    Re : Limite d'une fonction trigonometrique

    Citation Envoyé par jojoxxp4 Voir le message
    Si et donc lim(x->pi/2) cosx-cospi/2 / (x - pi/2) = f'(pi/2) = -sin pi/2 = -1 ( étant donné que f(x) = cosx et f'(x) = -sinx)
    Oui, tu as bien reconnu le taux d'accroissement d'une fonction entre x et h, qui à la limite (quand x tend vers h) tend vers le nombre dérivée de f au point h: c'est la définition!!!!
    Mais ton écriture est approximative! L'écriture exacte est



    Tu fais de même pour le dénominateur, et tu verras que l'indétermination initiale est levée!!!

  11. #10
    inviteaf7e4316

    Re : Limite d'une fonction trigonometrique

    Je ne vois pas la forme f(x) - f(h) / x - h dans le denominateur :/

  12. #11
    Jon83

    Re : Limite d'une fonction trigonometrique

    Dans le dénominateur: f(x)=1-sinx donc f(x)-f(pi/2)= (1-sinx)-(1-sin(pi/2) ....

  13. #12
    inviteaf7e4316

    Re : Limite d'une fonction trigonometrique

    Et la derivee de (1-sinx)' = -cosx ?

  14. #13
    Jon83

    Re : Limite d'une fonction trigonometrique

    Ohhhhh... J'imagine que tu es en TS? Tu ne devrais pas poser cette question! Mais bon, c'est bien ça!!!

  15. #14
    inviteaf7e4316

    Re : Limite d'une fonction trigonometrique

    Ah non en 1ereS !

    merci beaucoup pour ton aide

  16. #15
    Jon83

    Re : Limite d'une fonction trigonometrique

    Ahhh!! Je comprends mieux.... Tu manque donc encore d'expérience !!!!
    Alors, au final quelle limite trouves-tu?

  17. #16
    inviteaf7e4316

    Re : Limite d'une fonction trigonometrique

    Je prend 2 cas:

    Si x---> pi/2- c'est alors +∞
    Si x---> pi/2+ c'est alors -∞

  18. #17
    Jon83

    Re : Limite d'une fonction trigonometrique

    Très bien! Tu peux le vérifier avec ta calculatrice ou sur le web avec WolframAlpha http://www.wolframalpha.com/input/?i...-sin%28x%29%29
    Bonne soirée, au revoir!

  19. #18
    inviteaf7e4316

    Re : Limite d'une fonction trigonometrique

    D'accord ! MERCIII

  20. #19
    invite2810b100

    Re : Limite d'une fonction trigonometrique

    Svp aider moi avec cette fonction lim lorsque x tend vers 2 de x-2/sin(x-2)...j'ai essayé le changement de variable mais je trouve une forme indéterminée

  21. #20
    gg0
    Animateur Mathématiques

    Re : Limite d'une fonction trigonometrique

    Bonjour.

    Pourquoi dans un fil abandonné depuis 2002 ? Tu ne pouvais pas créer un nouveau fil ?

    Sinon, pense à regarder l'inverse et soit à la définition du nombre dérivé, soit, si tu connais à sin(t)/t en 0.

    Cordialement.

Discussions similaires

  1. limite d'une fonction trigonométrique
    Par inviteb31e526f dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 06/11/2010, 17h35
  2. Variation d'une fonction trigonometrique
    Par invite1f5643b5 dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 24/02/2009, 09h00
  3. Limite d'une fonction trigonométrique
    Par invite89dbe67a dans le forum Mathématiques du collège et du lycée
    Réponses: 12
    Dernier message: 13/04/2008, 16h25
  4. [Term S] Calcul d'une limite trigonometrique
    Par inviteae72e011 dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 22/09/2006, 23h07
  5. Limite d'une fonction trigonométrique
    Par invitebb921944 dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 12/11/2004, 17h00