Problème - Page 2
Répondre à la discussion
Page 2 sur 3 PremièrePremière 2 DernièreDernière
Affichage des résultats 31 à 60 sur 66

Problème



  1. #31
    PlaneteF

    Re : Problème


    ------

    a/bc ne veut pas du tout dire mais

    Cdt

    -----

  2. #32
    invite83c14fa3

    Re : Problème

    alors j'aurai donc : (x+1)(racine de 2x+3 +1)/(racine de 2x+3 -1)(racine de 2x+3+1)
    : (x+1)(racine de 2x+3 +1)/(x+3-1)
    : (x+1)(racine de 2x+3+1)/(x+2)

    et là.. bloqué x)

  3. #33
    invite83c14fa3

    Re : Problème

    oh tu pourrais pas me le faire... stp

  4. #34
    PlaneteF

    Re : Problème

    Citation Envoyé par John751 Voir le message
    alors j'aurai donc : (x+1)(racine de 2x+3 +1)/((racine de 2x+3 -1)(racine de 2x+3+1))
    Les parenthèses rajoutées sont en rouge (sinon c'est faux).
    Dernière modification par PlaneteF ; 30/10/2016 à 23h53.

  5. #35
    invite83c14fa3

    Re : Problème

    ahh tout était là d'accord alors donc je l'ai fait j'ai ceci :

    j'arrive au résult de (x+1)(racine de 2x+3+1)/(( 2x+2))

    ensuite ; lim en x + l'infini de racine de x = + l'infini et lim en x + l'infini de 2x+3+1 = + l'infini aussi

    mais par quotient j'ai encore une F I non ?

  6. #36
    PlaneteF

    Re : Problème

    Citation Envoyé par John751 Voir le message
    j'arrive au résult de (x+1)(racine de 2x+3+1)/((racine de 2x+2))
    Ce que j'ai mis en rouge dans ta citation est en trop. Ensuite il y a une simplification évidente entre le numérateur et dénominateur.

    Cdt
    Dernière modification par PlaneteF ; 30/10/2016 à 23h59.

  7. #37
    invite83c14fa3

    Re : Problème

    ce sont les 2x ? ou alors le 1 du x+1 et le 1 de racine de 2x+3 +1 ?

    oui lol je me suis trompé c'est sa : (x+1)(racine de 2x+3+1)/(( 2x+2))

  8. #38
    PlaneteF

    Re : Problème

    Citation Envoyé par John751 Voir le message
    ce sont les 2x ? ou alors le 1 du x+1 et le 1 de racine de 2x+3 +1 ?
    ??? ... Calcule correctement le dénominateur (il n'y a pas de radical).

    Edit : C'est bon tu as changé, je n'avais pas vu, ... maintenant simplifie.

    Cdt
    Dernière modification par PlaneteF ; 31/10/2016 à 00h04.

  9. #39
    invite83c14fa3

    Re : Problème

    Ahnnn ok alors si je barre les 2 racine je me retrouve avec : (x+1)+1 (a développé ou pas ) ?

    j'aurai donc lim x+1 en + l'infinie = +l'infini ? par somme

  10. #40
    PlaneteF

    Re : Problème

    Edit : Supprimé
    Dernière modification par PlaneteF ; 31/10/2016 à 00h09.

  11. #41
    invite83c14fa3

    Re : Problème

    Citation Envoyé par PlaneteF Voir le message
    ??? ... Calcule correctement le dénominateur (il n'y a pas de radical).

    Edit : C'est bon tu as changé, je n'avais pas vu, ... maintenant simplifie.

    Cdt
    bah au dénominateur j'ai 2x+2 non ?

  12. #42
    PlaneteF

    Re : Problème

    Citation Envoyé par John751 Voir le message
    oui lol je me suis trompé c'est sa : (x+1)(racine de 2x+3+1)/(( 2x+2))
    "ça" ... pas "sa"

    Et puis maintenant tu mets des parenthèses inutiles au dénominateur ... Sinon simplifie.
    Dernière modification par PlaneteF ; 31/10/2016 à 00h09.

  13. #43
    invite83c14fa3

    Re : Problème

    je baisse les bras x) , comment simplifié ceci ? peut être en 4x ?

  14. #44
    PlaneteF

    Re : Problème

    Mais pose toi 5 minutes et arrête de balancer des messages à tout-va du genre "chépa", "chépa", "chépa" ... Ben si tu sais, tu as au numérateur et au dénominateur, tu sais quand même bien simplifier cela, ... alors arrête ton spam avec tes "chépa"

    Cdt
    Dernière modification par PlaneteF ; 31/10/2016 à 00h20.

  15. #45
    invite83c14fa3

    Re : Problème

    ok je suis vraiment con ... c'est 1/4 soit 1/2 non ?

  16. #46
    invite83c14fa3

    Re : Problème

    heu non en fait si j'ai (x+1)/(2x+2) le x et 2x s'en vont donc 1/2

  17. #47
    PlaneteF

    Re : Problème

    Citation Envoyé par John751 Voir le message
    ok je suis vraiment con
    Non, ... tu confonds "chat" et "forum". Réflechis un peu avant d'arroser de messages comme tu le fais.


    Citation Envoyé par John751 Voir le message
    c'est 1/4 soit 1/2 non ?
    Et voilà une illustration de ce que je viens à l'instant d'écrire, ... mais ça veut dire quoi "c'est 1/4 soit 1/2" ?????
    Dernière modification par PlaneteF ; 31/10/2016 à 00h31.

  18. #48
    PlaneteF

    Re : Problème

    Citation Envoyé par John751 Voir le message
    heu non en fait si j'ai (x+1)/(2x+2) le x et 2x s'en vont donc 1/2
    Comment ça le "le x et 2x s'en vont" ???
    Dernière modification par PlaneteF ; 31/10/2016 à 00h31.

  19. #49
    invite83c14fa3

    Re : Problème

    donc j'aurai ma nouvelle expression avec (racine de 2x+3+1)/(1/2) ? Et ça par quotient j'ai bel et bien +l'infini lorsque x tend vers + l'infini ^^

  20. #50
    invite83c14fa3

    Re : Problème

    bah franchement je vois pas comment simplifier autrement franchement j'ai bosser toute la journée , je suis à bout je viens juste vous demander de l'aide donc voilà la je sais vraiment pas.

  21. #51
    PlaneteF

    Re : Problème

    Citation Envoyé par John751 Voir le message
    donc j'aurai ma nouvelle expression avec (racine de 2x+3+1)/(1/2) ? Et ça par quotient j'ai bel et bien +l'infini lorsque x tend vers + l'infini ^^
    Pourquoi le 1/2 est-il au dénominateur ???


    Citation Envoyé par John751 Voir le message
    bah franchement je vois pas comment simplifier autrement franchement j'ai bosser toute la journée , je suis à bout je viens juste vous demander de l'aide donc voilà la je sais vraiment pas.
    C'est ta justification : "le x et 2x s'en vont" qui est space mountain.
    Dernière modification par PlaneteF ; 31/10/2016 à 00h38.

  22. #52
    invite83c14fa3

    Re : Problème

    je le met ou alors vous pouvez pas me réécrire l'expression histoire que je comprenne mieux s'il vous plaît , je sais que je vous énerve ..
    1/2(racine de 2x+3 +1) ?.

  23. #53
    PlaneteF

    Re : Problème

    Citation Envoyé par John751 Voir le message
    1/2(racine de 2x+3 +1) ?.
    Les parenthèses, ... les parenthèses, ... les parenthèses ... Ecrit comme tu le fais, c'est faux.

    Finalement
    Dernière modification par PlaneteF ; 31/10/2016 à 00h47.

  24. #54
    invite83c14fa3

    Re : Problème

    et donc comment je conclut pour les lim en -1 et -3/2 ?

  25. #55
    PlaneteF

    Re : Problème

    A ton avis ...

  26. #56
    invite83c14fa3

    Re : Problème

    alors pour x en + l'infini on a dis que c'était +l'infini par produit

    pour -1 et -3/2 je remplace x par ces valeurs ou bien ??

  27. #57
    PlaneteF

    Re : Problème

    Oui, à justifier pour des raisons de continuité.

    Cdt

  28. #58
    invite83c14fa3

    Re : Problème

    alors pour -3/2

    j'ai lim en -3/2 = 1/2*((racine de 2*(-3/2)+3)+1) je trouve 1 .
    lim en -1 = 1/2*((racine de 2*(-1)+3)+1) je trouve 1/2

  29. #59
    PlaneteF

    Re : Problème

    Citation Envoyé par John751 Voir le message
    j'ai lim en -3/2 = 1/2*((racine de 2*(-3/2)+3)+1) je trouve 1 .
    Non.


    Citation Envoyé par John751 Voir le message
    lim en -1 = 1/2*((racine de 2*(-1)+3)+1) je trouve 1/2
    Non.


    SAME PLAYER SHOOTS AGAIN
    Dernière modification par PlaneteF ; 31/10/2016 à 01h10.

  30. #60
    invite83c14fa3

    Re : Problème

    normalement je dois trouvé l'inverse , c'est bien sur cette expression qu'il faut que je remplace ?

Page 2 sur 3 PremièrePremière 2 DernièreDernière

Discussions similaires

  1. probleme avec chaudiere Viessmann Vitocrossal 300 - probleme de sur-tension?
    Par apap dans le forum Habitat bioclimatique, isolation et chauffage
    Réponses: 0
    Dernier message: 19/04/2016, 22h52
  2. Problème de majoration - Discrétisation d'un problème de Dirichlet homogène pénalisé
    Par invite2ec0a62b dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 30/01/2015, 09h13
  3. Réponses: 2
    Dernier message: 04/12/2012, 15h08
  4. probleme avec une asympote et une fonction exponentielle(Probleme d'enoncé?)
    Par invite3c19aac3 dans le forum Mathématiques du collège et du lycée
    Réponses: 15
    Dernier message: 04/12/2008, 18h26