Répondre à la discussion
Affichage des résultats 1 à 11 sur 11

Calcul d'intégrale



  1. #1
    Mademoiselle Chloe

    Calcul d'intégrale


    ------

    bonsoir, je m'excuse mais cette fois on m'a demandé de calculer une intégrale que je trouve très compliqué et je n'ai pas d'indice ni même de piste.

    c'est l'intégrale de 0 à + l'infini de:

    exp(-x^2)

    j'ai montré que cette intégrale existait après j'ai fait un changement de variable mais ca ne m'apas plus aidé que ça. Peut etre qu'il y a quelque chose qui devrait me sauter aux yeux, si vous pouviez me donner un indice ...

    -----

  2. Publicité
  3. #2
    GuYem

    Re : Calcul d'intégrale

    Salut, c'est un classique.

    Une bonne piste est de commencer par la mettre au carré, de grouper les intégrales entre elles et de faire un changement de variable polaire.
    Bravo jolie Ln, tu as trouvé : l'armée de l'air c'est là où on peut te tenir par la main.

  4. #3
    tize

    Re : Calcul d'intégrale

    Très classique intégrale de Gauss, se trouve partout, Wikipedia, Google...
    En espérant ne pas avoir dit trop de bêtises...Cordialement José

  5. #4
    cherwam07

    Re : Calcul d'intégrale

    Si je peux rajouter quelque chose :

    Cette intégrale soit par la méthode que GuYem a proposé, soit grace à la fonction Gamma d'Euler.

    Have fun

  6. #5
    GuYem

    Re : Calcul d'intégrale

    On peut également la calculer d'une jolie manière avec le théorème des résidus.
    Bravo jolie Ln, tu as trouvé : l'armée de l'air c'est là où on peut te tenir par la main.

  7. A voir en vidéo sur Futura
  8. #6
    Ithilian_bzh

    Re : Calcul d'intégrale

    Tu aurais un lien pour la démonstration avec les résidus ?
    Parce que la fonction me paraît être holomorphe sur C, donc pour l'appliquer directement...
    Astronome ingénieur alternatif

  9. Publicité
  10. #7
    Gwyddon

    Re : Calcul d'intégrale

    Idem pour moi, il faudrait que la fonction soit méromorphe, or là je ne vois pas de manière évidente son caractère méromorphe, mais plutôt son caractère holomorphe (puisque DSE sur tout C)...
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  11. #8
    LoicM

    Re : Calcul d'intégrale

    Citation Envoyé par GuYem Voir le message
    On peut également la calculer d'une jolie manière avec le théorème des résidus.
    Bonjour,
    J'ai vu qu'on pouvait calculer cette équation avec le théorème des résidus en utilisant le chemin suivant : origine --> droite à -pi/4, --> arc de cercle vers l'axe des x, puis retour à l'origine. Mais je n'arrive pas davantage à calculer l'intégrale le long de ce chemin.
    Où puis-je trouver cette démo?

    Merci

  12. #9
    LoicM

    Re : Calcul d'intégrale

    Il y a une solution pour l'intégrale pour une variable complexe (z² au lieu de x² dans l'argument) sur le site :
    http://www.physik.fu-berlin.de/~kleinert/re.html#b7
    (Annexe AB1 du poly sur les intégrales de chemin).
    Mais il utilise le résultat pour l'intégrale sur les réels.
    Y a t'il une solution de cette intégrale pour les réels qui n'utilise pas le résultat!?

  13. #10
    Gwyddon

    Re : Calcul d'intégrale

    La solution de Guyem, avec le passage en coordonnées polaires et un théorème de Fubini derrière
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  14. #11
    GuYem

    Re : Calcul d'intégrale

    Citation Envoyé par GuYem Voir le message
    On peut également la calculer d'une jolie manière avec le théorème des résidus.

    Je ne me rappelle plus très bien mais il me semble avoir un jour utilisé un truc comme cela :

    -Montrer que l'intégrale reste la même si on remplace x par x+iy, avec y quelconque ; c'est ici qu'on utilise les résidus en intégrant sur un rectangle de hauteur y dont la longueur tend vers l'infini

    -Bien choisir y pour arriver à trouver une primitive de je ne sais plus quoi

    Elles sont pas belles mes indications ?
    Bravo jolie Ln, tu as trouvé : l'armée de l'air c'est là où on peut te tenir par la main.

Sur le même thème :

Discussions similaires

  1. calcul d'intégrale
    Par Big Boy dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 01/10/2006, 01h50
  2. Calcul d'intégrale
    Par toxivirus_jon dans le forum Mathématiques du supérieur
    Réponses: 17
    Dernier message: 08/03/2006, 22h17
  3. Calcul d'intégrale
    Par Brikkhe dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 24/02/2006, 15h03
  4. calcul d'intégrale
    Par fourmie dans le forum Mathématiques du supérieur
    Réponses: 14
    Dernier message: 28/07/2005, 10h50
  5. calcul d'intégrale
    Par cindy06 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 25/03/2005, 21h30