Répondre à la discussion
Affichage des résultats 1 à 22 sur 22

Démonstration



  1. #1
    neutrino éléctronique

    Démonstration


    ------

    Salut à tous,
    j'aimerais savoir comment on peut démontrer que e^(i*pi)+1=0
    Merci d'avance

    -----
    "Les gens ont peur de l'inconnu. Plus on explore et découvre, moins on a peur."

  2. Publicité
  3. #2
    GuYem

    Re : Démonstration

    Ca dépend beaucoup de la définition que tu prends pour e et pour pi ...
    Bravo jolie Ln, tu as trouvé : l'armée de l'air c'est là où on peut te tenir par la main.

  4. #3
    Gwyddon

    Re : Démonstration

    On peut par exemple faire une démo bien moche à partir de la définition de l'exponentielle complexe, du logarithme complexe écrit en série entière et mixer le tout... Mais c'est vraiment lourd à lire (je l'avais écrite il y a deux ans pour répondre à des questions sur le log complexe sur le forum, vous pouvez trouver cette démo sur mon site )
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  5. #4
    neutrino éléctronique

    Re : Démonstration

    Désolé le logarithme complexe c'est pas encore mon truc
    "Les gens ont peur de l'inconnu. Plus on explore et découvre, moins on a peur."

  6. #5
    Therion

    Re : Démonstration

    ei.pi peut s'écrire cos (pi) + i.sin (pi)

    or nous savons tous que cos (pi) = -1 et sin (pi) = 0
    ainsi ei.pi = -1
    donc ei.pi+1 = 0

    Voilà.

  7. A voir en vidéo sur Futura
  8. #6
    neutrino éléctronique

    Re : Démonstration

    Ah ok merci beaucoup
    "Les gens ont peur de l'inconnu. Plus on explore et découvre, moins on a peur."

  9. Publicité
  10. #7
    Gwyddon

    Re : Démonstration

    Mais en fait ce n'est pas vraiment une démo

    Enfin, disons qu'elle n'est pas rigoureuse, car elle ne dit pas d'où vient la notation exponentielle.

    EDIT : en plus, comment vous prouvez que cos(pi)=-1 et sin(pi)=0 ?
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  11. #8
    Therion

    Re : Démonstration

    ben au niveau lycée, dans un cercle trigo^^

  12. #9
    Gwyddon

    Re : Démonstration

    Ce n'est pas une démo ça
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  13. #10
    edpiste

    Re : Démonstration

    Citation Envoyé par Therion Voir le message
    ei.pi peut s'écrire cos (pi) + i.sin (pi)
    C'est vrai mais c'est pas si simple à démontrer, sauf à prendre pour définition de l'exponentielle ce que tu viens d'affirmer (mais dans ce cas-là il faudrait redémontrer d'autres propriétés moins évidentes...)

  14. #11
    the strange

    Re : Démonstration

    salut,
    c'est vraiment énervant
    la notation exponentielle pour les nombres complexes est un truc génial parce que ca aide beaucoup...
    mais on ne comprend pas d'ou ca vient?
    "En mathématique on ne comprend pas les choses ... on s'y habitue"

  15. #12
    Therion

    Re : Démonstration

    en TS c'est une simple notation, on a vu aucune démonstration.

  16. Publicité
  17. #13
    martini_bird

    Re : Démonstration

    Salut,

    on peut bidouiller une démo en prenant pour définition de l'exponentielle le fait que c'est la seule fonction continue sur R invariante par dérivation et telle que exp(1)=e. On peut facilement démontrer que son développement en série entière est car .

    D'autre part, on peut utiliser les formules de Taylor afin de prouver que et .

    Par unicité de la décomposition en série entière, on obtient bien .

    Cordialement.
    « Angle éternel, la terre et le ciel, pour bissectrice, le vent. » Garcia Lorca

  18. #14
    Gwyddon

    Re : Démonstration

    Niveau TS quoi

    Mais il reste ensuite à démontrer que pour montrer que
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  19. #15
    martini_bird

    Re : Démonstration

    Citation Envoyé par Gwyddon Voir le message
    Niveau TS quoi
    Oui c'est sûr que c'est pas niveau TS... A noter toutefois que cette manière de faire est à peu de choses près la démarche qu'a suivi Euler.

    Citation Envoyé par Gwyddon Voir le message
    Mais il reste ensuite à démontrer que
    Et il faudrait démontrer que l'addition est commutative et que 1+1=2 aussi ?

    Cordialement.
    « Angle éternel, la terre et le ciel, pour bissectrice, le vent. » Garcia Lorca

  20. #16
    Gwyddon

    Re : Démonstration

    Non mais je suis sérieux là

    Comment démontrer proprement en fait que l'on a bien les relations énoncées sur cos et sin ?
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  21. #17
    martini_bird

    Re : Démonstration

    En les lisant sur le cercle trigonométrique, par exemple ?

    Je vois pas bien où se situe ta question...
    « Angle éternel, la terre et le ciel, pour bissectrice, le vent. » Garcia Lorca

  22. #18
    Gwyddon

    Re : Démonstration

    Citation Envoyé par martini_bird Voir le message
    En les lisant sur le cercle trigonométrique, par exemple ?

    Je vois pas bien où se situe ta question...
    En fait, est-ce bien une démo que de le lire sur le cercle trigo ?

    EDIT : oubliez ce que j'ai dit, c'est n'importe quoi et je suis fatigué...
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  23. Publicité
  24. #19
    Ksilver

    Re : Démonstration

    Citation Envoyé par Gwyddon Voir le message
    Non mais je suis sérieux là

    Comment démontrer proprement en fait que l'on a bien les relations énoncées sur cos et sin ?
    bonne question : au programe de sup et de spé, sin et cos sont definit comme etant la parti reel et la parti imaginaire de exp(ix).... donc la demonstration n'est pas tres difficle


    sinon cela peut ce voir avec les series entière si on prend une autre definition.

  25. #20
    ericcc

    Re : Démonstration

    Une idée : identifier les complexes aux matrices, et passer à l'exponentielle des matrices ?

  26. #21
    invite7863222222222
    Invité

    Re : Démonstration

    Le cos et le sin ne sont pas respectivement la projection sur les axes x, y d'un point du cercle unité ?

  27. #22
    martini_bird

    Re : Démonstration

    Citation Envoyé par jreeman Voir le message
    Le cos et le sin ne sont pas respectivement la projection sur les axes x, y d'un point du cercle unité ?
    Salut,

    oui, c'est une définition possible et c'est une "bonne" définition. Mais la "meilleure" (au sens de la plus effective en maths) est de considérer les parties réelles et imaginaires de l'exponentielle complexe (cf. le préambule du Rudin dont on a déjà discuté ici).

    Cordialement.
    « Angle éternel, la terre et le ciel, pour bissectrice, le vent. » Garcia Lorca

Sur le même thème :

Discussions similaires

  1. E=mc²... demonstration
    Par YABON dans le forum Physique
    Réponses: 70
    Dernier message: 20/11/2011, 11h58
  2. Démonstration
    Par Emmanuelle31 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 27/09/2007, 17h11
  3. Démonstration
    Par Sevda dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 12/11/2006, 19h22
  4. Démonstration
    Par Matt88 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 08/02/2006, 17h55
  5. Démonstration
    Par justine mo. dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 22/11/2004, 01h51