calcul d'intégrales curvilignes
Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

calcul d'intégrales curvilignes



  1. #1
    invite5c6c2cbf

    calcul d'intégrales curvilignes


    ------

    Bonjour à tous,

    J'ai trouvé des exos sur les intégrales complexes mais je suis bloqué sur un type d'exos.
    Par exemple:
    calculer en fonction du nombre complexe a l'intégrale de la fonction f(z)=(8z - 8)/(z^3 - 4z) sur |z-a|=1. Et preciser pour quelles valeurs de a l'intégrale n'est pas definie.
    En fait, j'ai voulu utilisé le theoreme des residus mais étant donné qu'on ne sait pas si les singularités de f (0, 2 et -2) sont dans le disque centré en a et de rayon 1 (donc on ne sait pas si on doit les prendre en compte dans le calcul des residus).

    J'ai essayé autre chose en faisant la deocmposition en elements simples de f mais toujours le meme probleme, comment calculer les intégrales puisque le chemin depend de a. Je pense qu'il faut partir de cette maniere (decomposition en elements simples) mais apres je bloque ....

    Quelqu'un pourrait-il m'aider?

    Merci

    -----

  2. #2
    invite4793db90

    Re : calcul d'intégrales curvilignes

    Salut,

    En fait, j'ai voulu utilisé le theoreme des residus mais étant donné qu'on ne sait pas si les singularités de f (0, 2 et -2) sont dans le disque centré en a et de rayon 1 (donc on ne sait pas si on doit les prendre en compte dans le calcul des residus).
    Ben précisément, tout dépend de a : si a=10, ton cercle n'entoure rien et l'intégrale est nulle. Si a=0, c'est différent... Il faut discuter en fonction de a.

    Cordialement.

  3. #3
    invite5c6c2cbf

    Re : calcul d'intégrales curvilignes

    J'ai bien compris que le resultat de cette intégrale va dependre du paramertre a mais je ne vois pas comment faire pour determiner la solution...

    Merci de votre aide

  4. #4
    invite4793db90

    Re : calcul d'intégrales curvilignes

    La solution est simple à déterminer : c'est la somme des résidus contenus dans le cercle. Reste à voir quand le cercle entoure un résidu, ce qui n'est pas très difficile à voir...

    Cordialement.

  5. A voir en vidéo sur Futura
  6. #5
    invite5c6c2cbf

    Re : calcul d'intégrales curvilignes

    Salut,

    Je voulais savoir si quelqu'un pouvait me dire si ma solution est la bonne:
    j'ai commence par chercher les conditions sur le parametre a pour que le contour entoure les singularités: on trouve que 0 est dans le disque centré en a et de rayon 1 si |a|<1. De meme, pour -2 la condition est |2+a|<1 et enfin pour 2, |2-a|<1.
    Ces disques étant disjoints on trouve (avc le theoreme des residus)
    si |a|<1 l'intégrale vaut 4i*pi
    si |2+a|<1, elle vaut 6i*pi
    si |2-a|<1, elle vaut 2i*pi

    Si quelqu'un pouvait me dire si c'est bon et si je n'ai pas oublié de cas, ce serait sympa.

    Merci d'avance

  7. #6
    invite4793db90

    Re : calcul d'intégrales curvilignes

    Salut,

    je n'ai pas calculé les résidus mais je suis d'accord avec le découpage.

    Reste à voir ce qui se passe quand a est "assez loin" des résidus et quand a=1 ou -1 par exemple (relis l'énoncé)...

    Cordialement.

  8. #7
    invite5c6c2cbf

    Re : calcul d'intégrales curvilignes

    Merci martini_bird d'avoir pris le temps de verifier ce que j'avais écrit.

    C'est vrai que j'ai oublié de preciser quand est ce que l'intégrale n'était pas defini: en l'occurence c'est lorsque |a|=1 ou |2+a|=1 ou |2-a|=1; D'aure part, elle est nulle pour toutes les autres valeurs de a en dehors du domaine formé par la reunion des trois disques cités plus haut puisque le contour ne contiendra plus de singularités.

    Je crois que c'est bon la, non?

    Merci pour tout!

Discussions similaires

  1. calcul d'integrales
    Par invite84a62bd9 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 05/05/2007, 12h42
  2. Intégrales curvilignes
    Par invite42abb461 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 10/02/2007, 16h22
  3. Calcul d'intégrales
    Par invite4575d42b dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 30/12/2006, 14h02
  4. Calcul d'intégrales
    Par invitefb506ffc dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 15/12/2004, 18h54