Répondre à la discussion
Affichage des résultats 1 à 9 sur 9

Développement en série entière



  1. #1
    g_h

    Développement en série entière


    ------

    Hello,


    Je faisais des exercices sur les séries, et voilà que je tombe là dessus :
    Développer en série entière au voisinage de 0.
    J'ai essayé diverses choses, mais je n'en vois pas le bout.
    Sous certaines conditions, j'ai pu décomposer Arctan(x+a) en Arctan(a) + Arctan(quelque chose qui tend vers 0 en 0) (je n'ai plus le calcul sous la main), mais ça ne me donnait rien qui vaille la peine de continuer. En dérivant, je bute forcément sur le même problème.

    Avant de chercher la formule générale "au feeling" (et je suppose que ce n'est pas ça le but de l'exercice), je me demaidais si vous n'auriez pas une petite idée pour m'éclairer ?

    Merci

    -----

  2. Publicité
  3. 📣 Nouveau projet éditorial de Futura
    🔥🧠 Le Mag Futura est lancé, découvrez notre 1er magazine papier

    Une belle revue de plus de 200 pages et 4 dossiers scientifiques pour tout comprendre à la science qui fera le futur. Nous avons besoin de vous 🙏 pour nous aider à le lancer...

    👉 Je découvre le projet

    Quatre questions à explorer en 2022 :
    → Quels mystères nous cache encore la Lune 🌙 ?
    → Pourra-t-on bientôt tout guérir grâce aux gènes 👩‍⚕️?
    → Comment nourrir le monde sans le détruire 🌍 ?
    → L’intelligence artificielle peut-elle devenir vraiment intelligente 🤖 ?
  4. #2
    g_h

    Re : Développement en série entière

    Ah, un truc que je n'ai pas essayé, c'est de voir si une quelconque formule permet d'obtenir directement la dérivée n-ième de l'arctangente... je vais voir.

  5. #3
    Ksilver

    Re : Développement en série entière

    plusieur piste pour démarer :


    1)arctan(x+a) =(arctan(x)+arctan(a))/(1-arctan(x)*arctan(x))

    tu dévelope arctan(x) en serie entiere, et tu croise les doigt pour que le 1/(1-arctan(x)*arctan(x)) ce simplifie quand on compose les dévelopement ^^.


    2) calculer la dérivé de ta fonction : c'est une fraction rationel, tu sais donc la dévelopez en serie entière; il ne te restera plus qua intégrer (en oubliant pas la constant d'integration !! )


    3) apres tous, on connait (un peu...) la dérivé n-iemme de arctan, on peut donc utiliser Taylor (laplace ou largange) pour obtenir le dévelopement...


    NB : meme si à priori les trois methodes fonctionne... je pense que c'est la deuxieme qui a le plus de chance d'aboutir... mais dans tous les cas ca va etre tres calculatoire et il est tres peu probable que le résultat soit simple... mais bon j'ai deja vu déveloper des chose bien plus compliqué que ca... (mais le résultat est horrible et inexploitable e géneral...)

  6. #4
    g_h

    Re : Développement en série entière

    Citation Envoyé par Ksilver Voir le message
    plusieur piste pour démarer :


    1)arctan(x+a) =(arctan(x)+arctan(a))/(1-arctan(x)*arctan(x))

    tu dévelope arctan(x) en serie entiere, et tu croise les doigt pour que le 1/(1-arctan(x)*arctan(x)) ce simplifie quand on compose les dévelopement ^^.


    2) calculer la dérivé de ta fonction : c'est une fraction rationel, tu sais donc la dévelopez en serie entière; il ne te restera plus qua intégrer (en oubliant pas la constant d'integration !! )


    3) apres tous, on connait (un peu...) la dérivé n-iemme de arctan, on peut donc utiliser Taylor (laplace ou largange) pour obtenir le dévelopement...


    NB : meme si à priori les trois methodes fonctionne... je pense que c'est la deuxieme qui a le plus de chance d'aboutir... mais dans tous les cas ca va etre tres calculatoire et il est tres peu probable que le résultat soit simple... mais bon j'ai deja vu déveloper des chose bien plus compliqué que ca... (mais le résultat est horrible et inexploitable e géneral...)
    Merci de me répondre

    Pour le 1), tu es sur de ta formule ? Tu ne confonds pas avec la formule de tan(x+a) ?
    Va pour la fraction rationelle alors (ça va être moche, c'est peut-être pour ça que j'y avais pas pensé ).


    PS : en fait, cet exercice est dans un lot d'exercices ou il fallait trouver de grosses astuces pour s'en tirer, donc ça m'étonne que l'on soit "obligé" de faire comme ça.

    Merci beaucoup en tous cas !

  7. A voir en vidéo sur Futura
  8. #5
    homotopie

    Re : Développement en série entière

    Citation Envoyé par Ksilver Voir le message
    Va pour la fraction rationelle alors (ça va être moche, c'est peut-être pour ça que j'y avais pas pensé ).
    Bonjour,
    c'est la bonne méthode mais je ne savais pas que le développement en série d'une fraction aussi sympathique que soit moche.

  9. #6
    Ksilver

    Re : Développement en série entière

    oula !!!


    oubliez la 1, j'etais pas bien reveillez quand j'ai ecrit sa surement



    ba la fraction en question sa sera pas 1/(1+x²)

    mais 1/(1+(x+a)²)... donc ca risque de finir en decomposition en élement simple et compagnie a mon avi ^^

  10. Publicité
  11. #7
    g_h

    Re : Développement en série entière

    Oui, c'est décomposition en éléments simples avec des complexes (discriminant = -4), c'est pas que ça ce soit dur, mais c'est pas très intéressant... ! Et en tout cas ça n'a rien de joli...

  12. #8
    homotopie

    Re : Développement en série entière

    Citation Envoyé par Ksilver Voir le message
    ba la fraction en question sa sera pas 1/(1+x²)

    mais 1/(1+(x+a)²)... donc ca risque de finir en decomposition en élement simple et compagnie a mon avi ^^
    pas bien réveillé moi non plus.

  13. #9
    stylio

    Développement en série entière de Arctan(x)

    Bonjour,

    Je souhaiterai de l'aide pour cet exo :

    Montrer que , pour tout x dans [-1,1] :

    Arctang(x) = ∑ (-1)^n * [(x^2n+1)/(2n+1)]

    PS: ∑(de 0 à l'infini)

    Merci d'avance

Discussions similaires

  1. Développement en série entière
    Par Ayrawhsia Aathsir Tia dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 14/04/2007, 19h41
  2. Développer en série entière
    Par lyrah dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 06/03/2007, 07h49
  3. Série entière
    Par Manolack dans le forum Mathématiques du supérieur
    Réponses: 15
    Dernier message: 28/11/2006, 22h04
  4. Série entière !
    Par nassoufa_02 dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 16/11/2006, 22h28
  5. Développement en série entière de fonctions usuelles
    Par Etile dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 03/11/2006, 15h13