Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Equation complexes



  1. #1
    amphidom

    Question Equation complexes

    Salut à tous,

    je suis en train de mettre la dernière main à un devoir maison et je coince sur cette question :
    il s'agit de trouver la valeur de A=produit de K=1 à n-1 de sin(kpi/n) après avoir résolu dans C l'équation (z+1)^n=1.
    Je trouve que les solutions sont de la forme z(k)=2isin(kpi/n)exp(ikpi/n) avec k variant de 1 à n.
    Mais je ne vois pas comment continuer à part peut-être de me servir du produit des racines du polynôme. Pouvez-vous me confirmer le résultat intermédiaire et me donner une indication qui me mettrait sur la voie ?

    -----


  2. Publicité
  3. #2
    rvz

    Re : Equation complexes

    Salut,

    Regarde du coté des fonctions symétriques des racines.

    __
    rvz

  4. #3
    ericcc

    Re : Equation complexes

    Citation Envoyé par rvz Voir le message
    Salut,

    Regarde du coté des fonctions symétriques des racines.

    __
    rvz
    Je dirais même plus : il n'y a pas k=0 dans ton produit, or c'est une racine...

  5. #4
    Ledescat

    Re : Equation complexes

    moi je penserais à qqchose du genre:
    somme de K=1 à n-1 de sin(kpi/n)= somme de K=1 à n-1 de Im(e^(kpi/n))
    =Im(somme de K=1 à n-1 de (e^(Pi/n)^k)) ce qui constitue un somme géométrique...
    je ne vois pas trop la méthode par résolution de (1+i)^n...

  6. #5
    Ledescat

    Re : Equation complexes

    oups, c'est un produit, au temps pour moi

  7. A voir en vidéo sur Futura
  8. #6
    amphidom

    Re : Equation complexes

    Citation Envoyé par rvz Voir le message
    Salut,

    Regarde du coté des fonctions symétriques des racines.

    __
    rvz
    salut,

    c'est ce que j'ai fait, mais il y a probablement une astuce qui m'échappe encore car j'ai établi en posant X=z+1 et en désignant par X(k) les racines nièmes de l'unité que produit de X(k) pour k variant de 0 à n-1 est égal à (-1)^n-1 mais comment passer de X(k) à z(k) ?

  9. Publicité
  10. #7
    amphidom

    Re : Equation complexes

    Ca y est j'ai trouvé la solution de cet exercice. L'astuce consistait en partant de l'expression (z+1)^n=1 à utiliser la formule du binôme de Newton pour exprimer le polynôme P(z) puis à écarter la solution triviale z=0 ce qui permet de diviser l'égalité par z.

    Merci pour votre aide !

    A la prochaine

Sur le même thème :

Discussions similaires

  1. equation a résoudre (complexes)
    Par Julien_B dans le forum Mathématiques du supérieur
    Réponses: 14
    Dernier message: 18/11/2007, 17h46
  2. equation a coeff complexes
    Par vince3001 dans le forum Mathématiques du supérieur
    Réponses: 22
    Dernier message: 20/09/2007, 17h04
  3. équation a coefficients complexes
    Par poinserré dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 07/04/2007, 20h55
  4. [TS] Equation complexes, hu ?
    Par kNz dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 12/11/2006, 17h18