Je dois faire une integraton par partie de In+2 = integrale de (cosx)n afin de prouver que In+2 = (n+1/n+2)In (avec In = integrale de (cosx)n )
Si quelque peut me donner une indication ca m'aiderais pas mal.
Merci
-----
02/08/2004, 13h16
#2
inviteca3a9be7
Date d'inscription
janvier 1970
Messages
209
Re : Aide sur une integration
Tu intègres entre quoi et quoi ?
*
Sinon cos(x)^n = cos(x)^(n-2)(1-sin(x)^2), après l'intégration par parties devrait être simple.
02/08/2004, 14h59
#3
invite3ae4f12b
Date d'inscription
janvier 1970
Messages
2
Aide sur une integration
Désolé,
Je dois faire une integraton par partie de In+2 = integrale de (cosx)n+2.Afin de prouver que In+2 = (n+1/n+2)In (avec In = integrale de (cosx)n )
02/08/2004, 15h37
#4
inviteab2b41c6
Date d'inscription
janvier 1970
Messages
1 796
Re : Aide sur une integration
Salut,
(In) c'est une suite numérique donc l'intégrale est prise sur un intervalle non réduit à un point, ce serait interessant que tu le donnes sinon ca risque de coincer pour le calcul de l'intégrale.
Aujourd'hui
A voir en vidéo sur Futura
02/08/2004, 19h48
#5
invite32bb90e8
Date d'inscription
janvier 1970
Messages
268
Re : Aide sur une integration
C'est l'intégrale de Wallis.
Tu poses In l'intégrale de cos(x)^n et Jn celle de sin(x)^n. Avec une intégration par parties tu vas trouver une relation entre In et Jn-1 et avec une seconde intgration par parties sur Jn-1 tu vas obtenir du In-2 ...
Marc
03/08/2004, 18h16
#6
invite4b55df75
Date d'inscription
janvier 1970
Messages
4
Re : Aide sur une integration
integration^par partie
u(x)=cos(x)^(n+1)
v(x)=cos(x)
In+2=integration par partie