Répondre à la discussion
Affichage des résultats 1 à 9 sur 9

Quaternions et Géometrie



  1. #1
    Deeprod

    Quaternions et Géometrie


    ------

    Bonjour à tous,

    Dans le cadre de mon TIPE de maths sup MPSI, j'ai quelques questions à vous poser sur les quaternions et surtout en termes de geometrie.
    Je traite pour le moment des rotations dans l'espace gràce à l'utilisation des quaternions.
    Auriez vous quelques autres pistes pour approfondir ma recherche toujours en terme de géometrie ? (Ce dans la limite de ce que je peux comprendre avec mes bagages de maths actuels)

    Merci !

    -----

  2. Publicité
  3. #2
    taladris

    Re : Quaternions et Géometrie

    Les quaternions sont très utiles pour démontrer les formules du produits vectoriel de R^3. Je n'ai malheureusement pas de référence à te donner (mais ça doit bien se trouver avec Internet)

    Cordialement

  4. #3
    Médiat

    Re : Quaternions et Géometrie

    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

  5. #4
    Deeprod

    Re : Quaternions et Géometrie

    Merci pour vos réponses !

    J'ai cependant une autre question toujours sur le même sujet,

    Pour prouver que H est un groupe non commutatif, on identifie un quaternions à la matrice :

    | a -b | (* est le conjugué)
    | b* a* | (avec a et b complexes)

    Pour justifier cette démarche, que faut-il dire ?
    Il est question d'isomorphisme il me semble ?

  6. #5
    Médiat

    Re : Quaternions et Géometrie

    Quelle définition des quaternions utilises-tu ?
    Ou encore : quel représentant de la classe d'isomorphisme de corps baptisée Quaternion utilises-tu ?
    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

  7. A voir en vidéo sur Futura
  8. #6
    Deeprod

    Re : Quaternions et Géometrie

    dans ce cas, je raisone sur les quaternions en terme de combinaison linéaire de 2 complexes.

    H = C + e.C (avec e quaternions dit "unité")

  9. Publicité
  10. #7
    Médiat

    Re : Quaternions et Géometrie

    Citation Envoyé par Deeprod Voir le message
    dans ce cas, je raisone sur les quaternions en terme de combinaison linéaire de 2 complexes.

    H = C + e.C (avec e quaternions dit "unité")
    Cette définition est insuffisante, car si je peux admettre facilement que 1e = e1 = e et que e² = 1, tu ne nous dis rien sur la définition de ei et ie. Et comme ces deux produits ne sont pas égaux (par définition), tu as ta réponse.
    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

  11. #8
    Deeprod

    Re : Quaternions et Géometrie

    Ok je comprend ce qui ne va pas, et cette définition devrait convenir il me semble

    H = (C²,+,x,1)

    Soit h un element de H, d'ecriture (a,b), h' un element de H, d'ecriture (a',b').

    + = (a+a',b+b')
    x = (aa' - bb'*, b'a* + b*a'*) (avec * pour conjuué)

    Donc dans ce cas, le "e" du post précédent est le doublet (0,1).
    Et le produit ie et ei, d'après la définition que j'ai donné sont définie et bien different.
    c'est le produit (i,0)x(0,1)

  12. #9
    bongo1981

    Re : Quaternions et Géometrie

    A tout hasard tu as aussi wikipedia qui est pas mal :
    http://fr.wikipedia.org/wiki/Quaternion

Sur le même thème :

Discussions similaires

  1. TIPE quaternions
    Par Einsteinium dans le forum TPE / TIPE et autres travaux
    Réponses: 6
    Dernier message: 29/01/2008, 11h31
  2. Quaternions et Octavions
    Par Major_PR dans le forum Mathématiques du supérieur
    Réponses: 16
    Dernier message: 03/11/2005, 23h11
  3. TIPE sur les quaternions... ?
    Par Antikhippe dans le forum TPE / TIPE et autres travaux
    Réponses: 22
    Dernier message: 24/08/2005, 18h55
  4. [Maths-Physique] [TS-L] quaternions,opérateurs, équations de Maxwell
    Par mtheory dans le forum Exercices pour les concours et examens
    Réponses: 31
    Dernier message: 16/07/2005, 11h24