Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Convergence uniforme



  1. #1
    Ayrawhsia Aathsir Tia

    Convergence uniforme


    ------

    Salut à tous,
    Voilà, je dois montrer que la suite de terme général :
    tend vers 1
    Pour permuter, il faut donc qu'il y ait convergence uniforme.
    L'ennui c'est que la convergence uniforme (vers la fonction constante égale à 1) de la suite de fonction à l'intérieur de l'intégrale ne marche que pour t dans l'intervalle [0,1[.
    En effet, dans ce cas, le sup de est strictement plus petit que 1 et donc la suite associée à ce sup tend bien vers 0.

    Comme c'est une intégrale, je me suis dit que retirer un point ne changeait rien. Mais a-t-on le droit de faire ça ? La convergence uniforme sur [0;1[ suffit-elle pour pouvoir permuter ?

    Merci pour vos éclairements

    -----

  2. Publicité
  3. #2
    Ksilver

    Re : Convergence uniforme

    Salut !

    Ce que tu dit n'as pas de sens :

    le sup sur [0,1[ ou le sup sur [0,1] c'est le meme !
    donc parler de convergence Unniforme sur [0,1[ n'as pas de sens, ce qu'on a ici, c'est la convergence uniforme sur tous compact inclu dans [0,1[... et ca ne suffit pas pour conclure sur la convergence de l'intégral.


    Dirige toi plutot vers de la convergence dominé, une domination par une constante marche tres bien.

    si tu ne connait pas de théorème de convergence dominé, alors forme la différence (ton intégral moins l'intégral de 1) et fait une majoration explicite de ca... tu obtiens ainsi le résultat sans avoir recours a aucun théorème.

  4. #3
    Ayrawhsia Aathsir Tia

    Re : Convergence uniforme

    Ah mais oui ! Je sais pourquoi j'y ai pas pensé à cette convergence dominée ! Sûrement parce que je l'utilise plus pour permuter série de fonctions et intégrale !
    Merci Ksilver !

    @++

  5. #4
    Ksilver

    Re : Convergence uniforme

    la majoration explicite est meme presque plus simple ici :

    1-intégral de 1/(1+t^n) =intégral de t^n/(1+t^n) < 1/2 *intégral de t^n <1/(2n) et hop c'est finit !

  6. A voir en vidéo sur Futura
  7. #5
    Ayrawhsia Aathsir Tia

    Re : Convergence uniforme

    Ok effectivement
    Sinon, avec la convergence dominée. On a bien convergence simple sur [0;1[. Le fait que ce soit ouvert en 1 ne pose pas problème ici ?

    @++

  8. #6
    Ksilver

    Re : Convergence uniforme

    et bien ici la question ne se pose meme pas : ca convegre simplement vers la fonction qui vaut 1 sur [0,1[ et 1/2 en 1, dont l'intégtral vaut bien 1.

    mais sinon, avec un cas plus pathologique, si ca diverger en 1, ca ne serait effectivement pas genant (a condition de pouvoir quand meme dominer bien sur... sinon il y a des contre exemple, comme l'intégral de n*x^n sur [0,1] qui tend vers 1, alors que n*x^n tend vers 0 partous sur [0,1[... mais ici le probleme viens du fait qu'on ne peut pas dominer)

  9. Publicité
  10. #7
    Ayrawhsia Aathsir Tia

    Re : Convergence uniforme

    Merci pour les précisions
    Donc en fait, la suite converge simplement vers une fonction continue par morceau qui vaut 1 sur [0;1[ et 1/2 en 1. C'est vrai qu'on utilise plus souvent ce théorème avec des fonctions limites continues, et non continue par morceaux

    @++

Discussions similaires

  1. série de Fourier, convergence uniforme
    Par anais_h dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 22/02/2007, 13h33
  2. Convergence uniforme
    Par Tcheby dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 20/02/2007, 15h12
  3. Convergence uniforme
    Par Edelstein dans le forum Mathématiques du supérieur
    Réponses: 14
    Dernier message: 15/10/2006, 22h10
  4. Une convergence uniforme de série
    Par GuYem dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 31/01/2006, 12h48
  5. Convergence uniforme
    Par amwus dans le forum Mathématiques du supérieur
    Réponses: 22
    Dernier message: 27/01/2006, 14h53